Save up your energy reserves for a longer life!

December 02, 2004

Research done in the last decade has suggested that limiting energy availability, for example, by dietary restriction, may extend the lifespan of different organisms. Now research from scientists at Elixir Pharmaceuticals provides a molecular sensor that supports this theory. A group headed by Javier Apfeld has found that an increased cellular ratio of two small molecules, AMP and ATP correlates well with increased lifespan in nematode worms. ATP is routinely used by the body as a source of energy and generates AMP as a final product. Apfeld's group focused on an enzyme, called AMP-1, that is specifically activated by high levels of AMP and results in a cascade of reactions that work to conserve energy stores.

Using an array of genetic and molecular tricks on nematode worms, the team demonstrated that animals with extra copies of the AMP-1 enzyme lived on average 13% longer lives than controls. Other experiments demonstrated that environmental stressors that activate the AMP-1 enzyme, also lead to longer lived animals. In addition, animals that were mutant for this enzyme were less able to cope with the same stressors, thus revealing a protective role for this enzyme in dealing with stress.

The group also examined the influence of AMP-1 on other pathways that regulate lifespan in different animals, specifically the insulin like signaling pathways. Experiments revealed that in some cases, AMP-1 activity contributes to longer lives and may work in parallel with previously established molecular players, such as Daf-16, a transcription factor important during insulin signaling.

This study has broad implications for human aging research. Apfeld remarks "The discovery that a sensor of energy levels regulates lifespan is very exciting because it tells us that the worm is actively making a decision in adjusting its lifespan in response to its energy state." The AMP-1 enzyme is highly conserved between nematodes and humans and is part of a molecular circuit that is very similar in both species. Further identification of the targets of AMP-1 will be important in understanding how lifespan is regulated in animals and how it may be controlled and extended therapeutically.

Apfeld leaves us with some food for thought "In humans, AMP-1 is activated in muscle in response to exercise. It is tempting to speculate that perhaps some of the beneficial effects of exercise in human health are the result of the effect of AMP-1 activation on the aging process"
-end-


Cold Spring Harbor Laboratory

Related Insulin Articles from Brightsurf:

US Insulin prices 8 times higher than in other nations
Insulin list prices in the United States have increased dramatically over the past decade, with per person insulin spending doubling between 2012 and 2016.

A gatekeeper against insulin resistance in the brain
The brain plays a major role in controlling our blood glucose levels.

Sorting and secreting insulin by expiration date
Visualizing the age of insulin secreting granules in cells allowed researchers to investigate how cells' preference for secreting newer granules is disrupted in diabetes.

Researchers develop a new ultrafast insulin
Stanford researchers tested a new insulin drug in diabetic pigs and found that it was twice as fast-acting as traditional insulin.

Insulin signaling suppressed by decoys
The discovery of an insulin 'decoy' molecule from the lab of Matthew Gill, PhD, in Florida shakes up understanding of insulin signaling, with implications for diabetes, longevity and aging research.

New mechanism for dysfunctional insulin release identified
In a new study, researchers at Uppsala University have identified a previously unknown mechanism that regulates release of insulin, a hormone that lowers blood glucose levels, from the β-cells (beta cells) of the pancreas.

Type 2 diabetes is not just about insulin
Obesity, by promoting the resistance to the action of insulin, is a major risk factor of diabetes.

The insulin under the influence of light
By understanding how the brain links the effects of insulin to light, researchers (UNIGE) are deciphering how insulin sensitivity fluctuates according to circadian cycles.

Does insulin resistance cause fibromyalgia?
Researchers led by a team from The University of Texas Medical Branch at Galveston were able to dramatically reduce the pain of fibromyalgia patients with medication that targeted insulin resistance.

Insulin insights
Insulin triggers genome-wide changes in gene expression via an unexpected mechanism.

Read More: Insulin News and Insulin Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.