Salt-water minnow research helps explain human cardiology

December 02, 2004

Arlington, Va.-Doctors and their patients have puzzled over why certain cholesterol-lowering drugs work better in some people than others. In research results published in the December issue of the journal Nature Genetics, the common minnow helps provide an answer.

Researchers Douglas Crawford and Jennifer Roach of the University of Miami's Rosenstiel School of Marine and Atmospheric Science (RSMAS) and Marjorie Oleksiak of North Carolina State University studied the genetic make-up of the fish and found that normal differences in how their heart muscles process fats and sugars contain clues to this mystery. The National Science Foundation (NSF)'s biocomplexity in the environment program, and biological oceanography program, funded the work.

"These scientists found a genetic set of keys that begins to unlock the mystery of why certain people can eat fatty foods and not suffer from heart disease, and why some medical treatments work more effectively in some people than in others," said Philip Taylor, director of NSF's biological oceanography program. "This far-reaching research is a result of NSF's investment in the use of genetics as a way of understanding how organisms adapt to their environments."

Some hearts, it turns out, use glucose (sugar) better than others. Some use fatty acids (fats) better. In general, if an individual is good at using or metabolizing one source, he or she is not good at using the other.

Using technology known as gene microarrays, the scientists were able to measure how the products of genes make proteins that in turn convert food sources into energy. They found a large variation from individual to individual in the number of genes associated with functions related to sugar and fat metabolism. Those differences explain much of the variation in cardiac metabolism of both sugar and fat, the researchers believe.

Surprisingly, the genes that matter most are not the same in each individual: in some, increases in certain genes affect the use of fats, while in others, they affect the use of sugars.

"This is an important first step in understanding why some of us can eat fatty foods and not suffer from cardiac disease," said Crawford, "and why some drugs or medical treatments work on some individuals but not on others."

Ultimately, the scientists think, their work could point the way toward identifying the number and type of certain genes a person has. With this information, doctors may be able to prescribe the most effective medication within a certain class of drugs to treat high cholesterol or blood sugar, and have a clearer understanding of an individual's propensity for heart disease.
-end-
The research was also funded by the National Institutes of Health's National Heart, Lung and Blood Institute.

Program contact: Phil Taylor, NSF, 703-292-8580, prtaylor@nsf.gov

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.58 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 40,000 competitive requests for funding, and makes about 11,000 new funding awards. The NSF also awards over $200 million in professional and service contracts yearly.

Receive official NSF news electronically through the e-mail delivery system, NSFnews. To subscribe, send an e-mail message to join-nsfnews@lists.nsf.gov. In the body of the message, type "subscribe nsfnews" and then type your name. (Ex.: "subscribe nsfnews John Smith")

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
News Highlights: http://www.nsf.gov/od/lpa
Newsroom: http://www.nsf.gov/od/lpa/news/media/start.htm
Science Statistics: http://www.nsf.gov/sbe/srs/stats.htm
Awards Searches: http://www.fastlane.nsf.gov/a6/A6Start.htm

National Science Foundation

Related Heart Disease Articles from Brightsurf:

Cellular pathway of genetic heart disease similar to neurodegenerative disease
Research on a genetic heart disease has uncovered a new and unexpected mechanism for heart failure.

Mechanism linking gum disease to heart disease, other inflammatory conditions discovered
The link between periodontal (gum) disease and other inflammatory conditions such as heart disease and diabetes has long been established, but the mechanism behind that association has, until now, remained a mystery.

New 'atlas' of human heart cells first step toward precision treatments for heart disease
Scientists have for the first time documented all of the different cell types and genes expressed in the healthy human heart, in research published in the journal Nature.

With a heavy heart: How men and women develop heart disease differently
A new study by researchers from McGill University has uncovered that minerals causing aortic heart valve blockage in men and women are different, a discovery that could change how heart disease is diagnosed and treated.

Heart-healthy diets are naturally low in dietary cholesterol and can help to reduce the risk of heart disease and stroke
Eating a heart-healthy dietary pattern rich in vegetables, fruits, whole grains, low-fat dairy products, poultry, fish, legumes, vegetable oils and nuts, which is also limits salt, red and processed meats, refined-carbohydrates and added sugars, is relatively low in dietary cholesterol and supports healthy levels of artery-clogging LDL cholesterol.

Pacemakers can improve heart function in patients with chemotherapy-induced heart disease
Research has shown that treating chemotherapy-induced cardiomyopathy with commercially available cardiac resynchronization therapy (CRT) delivered through a surgically implanted defibrillator or pacemaker can significantly improve patient outcomes.

Arsenic in drinking water may change heart structure raising risk of heart disease
Drinking water that is contaminated with arsenic may lead to thickening of the heart's main pumping chamber in young adults, according to a new study by researchers at Columbia University Mailman School of Public Health.

New health calculator can help predict heart disease risk, estimate heart age
A new online health calculator can help people determine their risk of heart disease, as well as their heart age, accounting for sociodemographic factors such as ethnicity, sense of belonging and education, as well as health status and lifestyle behaviors.

Wide variation in rate of death between VA hospitals for patients with heart disease, heart failure
Death rates for veterans with ischemic heart disease and chronic heart failure varied widely across the Veterans Affairs (VA) health care system from 2010 to 2014, which could suggest differences in the quality of cardiovascular health care provided by VA medical centers.

Heart failure: The Alzheimer's disease of the heart?
Similar to how protein clumps build up in the brain in people with some neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, protein clumps appear to accumulate in the diseased hearts of mice and people with heart failure, according to a team led by Johns Hopkins University researchers.

Read More: Heart Disease News and Heart Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.