Tracking the memory trace

December 02, 2005

Memory formation follows a dynamic pattern, allowing for retrieval from different areas of the brain, depending on when an organism needs to remember, said a researcher at Baylor College of Medicine.

That is what Dr. Ron L. Davis, professor of molecular and cellular biology at BCM, theorizes, based on his most recent report on the topic that finds a memory trace in Drosophila or fruit flies is formed in a pair of neurons called the dorsal pair medial neurons, but only 30 minutes after the fact and only through the mediation of a gene called, ironically, amnesiac. (A memory trace is a chemical change in tissue that represents the formation of a memory.) The study appears in the current issue of the journal Cell.

Davis and his colleagues were one of the first to actually record a memory trace being formed. That one was first stored in the insect's antennal lobe (where odors are processed). The flies are trained to associate an odor with an electric shock. The change in these neurons was immediate, but lasted only five to seven minutes.

In the more recent report involving the DPM neurons, the change can be seen 30 minutes after the formation of the memory, but it lasts about two hours.

"The other intriguing thing we don't understand is that this occurs only in one branch of the DPM neuron," said Davis. "Our impression now is that maybe what guides the behavior after training in the first few minutes is the antennal lobe. That is the important part that guides behavior for the small window of time after training. The DPM neurons have that role from 30 minutes to two hours."

The finding belies the commonly held precept that a memory is formed in the same way that data are stored in a computer - always in the same place.

"It's not as if we are forming memories that are then being written to a "hard disk" area of the brain, and it's there and recalled from the same location at any time after learning," said Davis. "We now think that different areas of the brain have dominion over small intervals of time after training. One area might have dominion and then another." Others who participated in the research include Drs. Dinghui Yu and Anjana Srivatsan, both of BCM, and Scott Waddell and graduate student Alex Keene, of the University of Massachusetts Medical Center.
-end-
Funding for this study came from the National Institutes of Health, the Mathers Charitable Trust, the R.P. Doherty-Welch Chair in Science and the Edward Mallinckrodt, Jr., Foundation.

Baylor College of Medicine

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.