Getting old? Slowing down? Blame inefficient mitochondria

December 02, 2005

Mitochondria are the cell's equivalent of power stations. A power station burns fuel to build up steam pressure and uses that pressure to drive a turbine linked to a dynamo. This in turn generates electricity. In mitochondria, the fuel is oxidised and builds up a pressure of hydrogen ions (protons). These force through molecular turbines and enable the cell to generate ATP, an energy unit that can be used throughout the cell.

Just as you can work out a power station's efficiency by seeing how much electricity it produces for each unit of oxygen and fuel it burns, you can assess the efficiency of mitochondria by monitoring the amount of ATP produced for every unit of oxygen used.

Researchers from various departments of the University of Washington, Seattle, compared resting muscle cells from young (7-month) and old (30-month) mice. They found that old muscle used around half as much energy as young muscle, but that the mitochondria used just as much oxygen at both ages. This represents a 50% loss in efficiency.

"The best explanation for this loss of efficiency is that the mitochondria become leaky as they get old. Protons leak back into the mitochondria without making ATP, and so reduce the coupling between oxygen use and ATP production," says lead author David Marcinek, who works in the department of radiology.

This inefficiency means that elderly people's muscle produce less useable energy (ATP) for every unit of oxygen consumed, making normal activity seem more challenging and limiting their range of activities.
-end-


Blackwell Publishing Ltd.

Related Mitochondria Articles from Brightsurf:

Researchers improve neuronal reprogramming by manipulating mitochondria
Researchers at Helmholtz Zentrum M√ľnchen and Ludwig Maximilians University Munich (LMU) have identified a hurdle towards an efficient conversion: the cell metabolism.

Inside mitochondria and their fascinating genome
EPFL scientists have observed -- for the first time in living cells -- the way mitochondria distribute their transcriptome throughout the cell, and it involves RNA granules that turn out to be highly fluid.

'Cheater mitochondria' may profit from cellular stress coping mechanisms
Cheating mitochondria may take advantage of cellular mechanisms for coping with food scarcity in a simple worm to persist, even though this can reduce the worm's wellbeing.

A ribosome odyssey in mitochondria
The ciliate mitoribosome structure provides new insights into the diversity of translation and its evolution.

Fireflies shed light on the function of mitochondria
By making mice bioluminescent, EPFL scientists have found a way to monitor the activity of mitochondria in living organisms.

First successful delivery of mitochondria to liver cells in animals
This experiment marks the first time researchers have ever successfully introduced mitochondria into specific cells in living animals.

Lack of mitochondria causes severe disease in children
Researchers at Karolinska Institutet in Sweden have discovered that excessive degradation of the power plants of our cells plays an important role in the onset of mitochondrial disease in children.

Unexpected insights into the dynamic structure of mitochondria
As power plants and energy stores, mitochondria are essential components of almost all cells in plants, fungi and animals.

Mitochondria are the 'canary in the coal mine' for cellular stress
Mitochondria, tiny structures present in most cells, are known for their energy-generating machinery.

Master regulator in mitochondria is critical for muscle function and repair
New study identifies how loss of mitochondrial protein MICU1 disrupts calcium balance and causes muscle atrophy and weakness.

Read More: Mitochondria News and Mitochondria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.