NJIT mathematician receives Fulbright to study thin film science in Argentina

December 02, 2005

Ever wonder how manufacturers produce the thinnest and finest materials for cell phone displays and even smaller electronic products? If so, you are entering the burgeoning new world of "thin film" science and the life work of theoretical physicist and applied mathematician Lou Kondic, PhD, associate professor, department of mathematics at New Jersey Institute of Technology (NJIT).

Kondic recently received a 2005-2006 Fulbright Scholar grant to study a dimension of thin film science focusing on the thinnest fluids. Kondic will travel next spring to Argentina for three months, where he will help physicists discover better ways to coat very delicate, almost invisible glass fibers. For almost two decades, scientists around the world have been searching for better polymers (more commonly known as plastics) to accomplish this task. These fibers are used to conduct electrical signals in microelectronics, optics and nanotechnology applications.

Interest in thin film science has sky-rocketed because of recent scientific and technological breakthroughs. Aside from coating glass fibers, these new thin microscopic coatings are used to enhance the durability of products ranging from the outer covering of NASA space ships to army tanks in Iraq.

In Argentina, Kondic will focus on how polymers are used to create a thin coating of a fluid film around an existing surface. Scientists consider fluids made of polymers to be complex. "My research will concentrate," said Kondic, "on the instabilities and patterns that form during the flows of these complex thin films."

Kondic's work especially interests researchers in the computer industry who want to know more about how to reach uniform coverage of a rotating silicon surface with a thin film polymer. Kondic hopes his work in Argentina will shed more light.

To achieve results, Kondic will use large scale numerical simulations to analyze the problems and find solutions. These simulations will be performed on a large computer located at NJIT, purchased with funds from the National Science Foundation.

This kind of work is often referred to as mathematical modeling. Mathematical modelers, like Kondic, formulate mathematical equations that are believed to describe physical, biological, or sociological phenomena. The modelers take the known and accepted formulas of physics and/or chemistry and create mathematical equations that described unexplained phenomenon--such as why two fluids may adhere. While mathematical modeling may not always validate a fundamental physical or chemical principle, if the answer matches most of the presumed data, then researchers know they may be on the right path. Scientists in many fields, including biology, chemistry, physics, and engineering use mathematical modeling in their research. Economists, sociologists, and political scientists also utilize sophisticated mathematical modeling to deal with detailed problems associated with human behavior.

Kondic is the author of more than 50 research articles. His most recent scholarly article, "On Nontrivial Traveling Waves in Thin Film Flows, Including Contact Lines" appeared in September of 2005 in Physica D. The National Science Foundation, NASA and the International Exchange of Scholars have supported Kondic's work. Kondic received his doctorate in physics from City College of City University of New York.
-end-
New Jersey Institute of Technology, the state's public technological research university, enrolls more than 8,100 students in bachelor's, master's and doctoral degrees in 100 degree programs offered by six colleges: Newark College of Engineering, New Jersey School of Architecture, College of Science and Liberal Arts, School of Management, Albert Dorman Honors College and College of Computing Sciences. NJIT is renowned for expertise in architecture, applied mathematics, wireless communications and networking, solar physics, advanced engineered particulate materials, nanotechnology, neural engineering and eLearning.

New Jersey Institute of Technology

Related Polymers Articles from Brightsurf:

Seeking the most effective polymers for personal protective equipment
Personal protective equipment, like face masks and gowns, is generally made of polymers.

Ultraheavy precision polymers
An environmentally friendly and sustainable synthesis of ''heavyweight'' polymers with very narrow molecular weight distributions is an important concept in modern polymer chemistry.

FSU researchers help develop sustainable polymers
Researchers at the FAMU-FSU College of Engineering have made new discoveries on the effects of temperature on sustainable polymers.

Structural colors from cellulose-based polymers
A surface displays structural colors when light is reflected by tiny, regular structural elements in a transparent material.

Growing polymers with different lengths
ETH researchers have developed a new method for producing polymers with different lengths.

Exciting new developments for polymers made from waste sulfur
Researchers at the University of Liverpool are making significant progress in the quest to develop new sulfur polymers that provide an environmentally friendly alternative to some traditional petrochemical based plastics.

Polymers can fine-tune attractions between suspended nanocubes
In new research published in EPJ E, researchers demonstrate a high level of control over a type of colloid in which the suspended particles take the form of hollow, nanoscale cubes.

Functional polymers to improve thermal stability of bioplastics
One of the key objectives for contemporary chemistry is to improve thermomechanical properties of polymers, in particular, thermostability of bioplastics.

Fluorescent technique brings aging polymers to light
Modern society relies on polymers, such as polypropylene or polyethylene plastic, for a wide range of applications, from food containers to automobile parts to medical devices.

Polymers to the rescue! Saving cells from damaging ice
Research published in the Journal of the American Chemical Society by University of Utah chemists Pavithra Naullage and Valeria Molinero provides the foundation to design efficient polymers that can prevent the growth of ice that damages cells.

Read More: Polymers News and Polymers Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.