Do our bodies' bacteria play matchmaker?

December 02, 2010

Tel Aviv ― Could the bacteria that we carry in our bodies decide who we marry? According to a new study from Tel Aviv University, the answer lies in the gut of a small fruit fly.

Prof. Eugene Rosenberg, Prof. Daniel Segel and doctoral student Gil Sharon of Tel Aviv University's Department of Molecular Microbiology and Biotechnology recently demonstrated that the symbiotic bacteria inside a fruit fly greatly influence its choice of mates.

The research was done in cooperation with Prof. John Ringo of the University of Maine, and was recently published in the Proceedings of the National Academy of Sciences (PNAS).

Love, marriage and fruit flies

Based on a theory developed by Prof. Rosenberg and Dr. Ilana Zilber-Rosenberg, the scientists propose that the basic unit of natural selection is not the individual living organism, plant or animal, but rather a larger biological milieu called a holobiont. This milieu can include plant or animal life as well as their symbiotic partners. In the case of animals, these partners tend to be microorganisms like intestinal bacteria.

"Up to now, it was assumed that the host organism undergoes evolution on its own, while its symbiotic bacteria undergo their own evolution," Prof. Rosenberg says. "The mechanism that we discovered enables evolution to occur more rapidly in response to environmental changes. Since a generation is shorter for bacteria than for multicellular organisms, they genetically adjust more quickly to changes in the holobiont," says Prof. Rosenberg.

Conducting their experiments on the rapidly-reproducing fruit fly, the scientists were able to test this new theory. The first experiment repeated a study carried out two decades ago by a Yale University researcher, in which a fly population was divided in half and fed different diets ― malt sugar versus starch. A year later, when the flies were re-integrated as one group, those who had been fed starch preferred starch-fed mates, while the sugar-fed flies preferred mates of a similar nutritional background. The repeat experiment carried out by the Tel Aviv University researchers shows that this dietary influence takes effect within just a generation or two rather than over an entire year.

In their second experiment, the Tel Aviv University team repeated the first, but with the addition of an antibiotic, which killed the bacteria and eliminated the specific mate preference. The mating process became random, with no dietary influence.

In subsequent experiments, the researchers successfully isolated the bacterial species responsible for reproductive isolation in flies with diet-related mating preferences, and found the bacteria Lactobacillus plantarum to be present in greater numbers in starch-fed fruit flies than in sugar-fed flies. When L. plantarum was reintroduced into the antibiotic-treated flies, the preferential mating behavior resumed ― proving that this bacterial species is at least partly responsible for the mating preference.

Rewriting Darwin?

Finally, in cooperation with Prof. Avraham Hefetz of Tel Aviv University's Department of Zoology, the team analyzed the sexual pheromones produced by the fruit flies. There turned out to be differences in pheromone levels between the two groups of flies − differences that again disappeared after administering antibiotics.

"The finding indicates that pheromone alterations are a mechanism by which we can identify mating preferences. We therefore hypothesize that it is the bacteria that are driving this change," Prof. Rosenberg says. He adds that these discoveries have implications for our entire understanding of natural selection -- something which may even lead to the development of a new theory of evolution.
-end-
American Friends of Tel Aviv University (www.aftau.org) supports Israel's leading, most comprehensive and most sought-after center of higher learning. Independently ranked 94th among the world's top universities for the impact of its research, TAU's innovations and discoveries are cited more often by the global scientific community than all but 10 other universities.

Internationally recognized for the scope and groundbreaking nature of its research and scholarship, Tel Aviv University consistently produces work with profound implications for the future.

American Friends of Tel Aviv University

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.