New discovery prevents symptoms of rare genetic disorder

December 02, 2010

A new study offers hope for children born with a rare genetic disease, according to a paper published by the American Association for the Advancement of Science.

The research was led by Dr. Matthew Ellinwood, a veterinarian and animal science professor at Iowa State University, in collaboration with Dr. Patricia Dickson at the Harbor-UCLA Medical Center, with colleagues at the Iowa State College of Veterinary Medicine, the University of Tennessee, St. Louis University and the University of Pennsylvania. Their work was published in the AAAS journal Science Translational Medicine.

The research focused on a disorder called mucopolysaccharidosis type I, or MPS I, which is caused by the lack of a key enzyme that breaks down substances the body needs to help build normal nerves, bone, cartilage, tendons, corneas, skin and connective tissue.

The researchers demonstrated that beginning replacement of the enzyme shortly after birth prevented irreversible damage caused by the disease. Previous studies on older subjects were only able to reduce MPS I symptoms with enzyme replacement therapy. Especially important was the prevention of clinical signs of brain, heart and bone disease.

"This study, for the first time, outlines the potential to fully treat mucopolysaccharidosis type I using current technology and medicines, and prevent what might otherwise be the fatal or seriously debilitating consequence of this inherited disease," Ellinwood said.

"This study will strengthen the need and demand for neo-natal screening for this rare disorder. Overall, we feel our discoveries outline tremendous improvements for the treatment of these sorts of rare genetic disorders generally and for the treatment of MPS I specifically," said Ellinwood, who has been studying the disease for 12 years in dogs, which also suffer from the disorder.

His past work helped identify a genetic mutation that led to a DNA testing program for the Schipperke dog breed that has for all practical purposes eliminated the disease.

There is no cure for severe forms of MPS I and similar disorders, which are collectively known as lysosomal storage diseases. Symptoms include clouding of eye corneas, skeletal deformities, heart valve disease and severe cognitive impairment and decline.

The research opens the door to improved methods of enzyme delivery in human patients with similar genetic disorders. It also suggests that babies could be tested for MPS I at the same time they are tested for other inherited diseases to determine if they need the enzyme replacement therapy.

"There is a test under development to identify children with MPS I at birth, allowing them access to treatment when it could do the most good. Currently, diagnosis is usually made after clinical signs of disease have already begun, and the rarity of the condition makes pre-natal diagnosis impractical," Ellinwood said.

MPS and related diseases are hereditary and almost without exception they are recessive, with a child receiving one mutant copy of the gene from each parent. Due to the recessive nature of the disease parents are unaffected, and have no way of knowing if they are carriers.
-end-
More information on these often fatal disorders is available from the National MPS Society Inc. website (http://www.mpssociety.org). The occurrence of MPS and related diseases in the general population is thought to be one in 25,000 births. The broader group of lysosomal storage diseases may occur as often as one in every 5,000 births.

More information about Ellinwood's work is available at: http://www.iastate.edu/Inside/2005/0415/ellinwood.shtml.

Iowa State University

Related Disease Articles from Brightsurf:

CLCN6 identified as disease gene for a severe form of lysosomal neurodegenerative disease
A mutation in the CLCN6 gene is associated with a novel, particularly severe neurodegenerative disorder.

Cellular pathway of genetic heart disease similar to neurodegenerative disease
Research on a genetic heart disease has uncovered a new and unexpected mechanism for heart failure.

Mechanism linking gum disease to heart disease, other inflammatory conditions discovered
The link between periodontal (gum) disease and other inflammatory conditions such as heart disease and diabetes has long been established, but the mechanism behind that association has, until now, remained a mystery.

Potential link for Alzheimer's disease and common brain disease that mimics its symptoms
A new study by investigators from Brigham and Women's Hospital uncovered a group of closely related genes that may capture molecular links between Alzheimer's disease and Limbic-predominant Age-related TDP-43 Encephalopathy, or LATE, a recently recognized common brain disorder that can mimic Alzheimer's symptoms.

Antioxidant agent may prevent chronic kidney disease and Parkinson's disease
Researchers from Osaka University developed a novel dietary silicon-based antioxidant agent with renoprotective and neuroprotective effects.

Tools used to study human disease reveal coral disease risk factors
In a study published in Scientific Reports, a team of international researchers led by University of Hawai'i (UH) at Mānoa postdoctoral fellow Jamie Caldwell used a statistical technique typically employed in human epidemiology to determine the ecological risk factors affecting the prevalence of two coral diseases--growth anomalies, abnormalities like coral tumors, and white syndromes, infectious diseases similar to flesh eating bacteria.

Disease-aggravating mutation found in a mouse model of neonatal mitochondrial disease
The new mitochondrial DNA (mtDNA) variant drastically speeds up the disease progression in a mouse model of GRACILE syndrome.

Human longevity largest study of its kind shows early detection of disease & disease risks
Human Longevity, Inc. (HLI) announced the publication of a ground-breaking study in the journal Proceedings of the National Academy of Sciences (PNAS).

30-year study identifies need of disease-modifying therapies for maple syrup urine disease
A new study analyzes 30 years of patient data and details the clinical course of 184 individuals with genetically diverse forms of Maple Syrup Urine Disease (MSUD), which is among the most volatile and dangerous inherited metabolic disorders.

Long-dormant disease becomes most dominant foliar disease in New York onion crops
Until recently, Stemphylium leaf blight has been considered a minor foliar disease as it has not done much damage in New York since the early 1990s.

Read More: Disease News and Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.