Discovery by UC Riverside entomologists could shrink dengue-spreading mosquito population

December 02, 2010

RIVERSIDE, Calif. - Each year, dengue fever infects as many as 100 million people while yellow fever is responsible for about 30,000 deaths worldwide. Both diseases are spread by infected female Aedes aegypti mosquitoes, which require vertebrate blood to produce eggs. The blood feeding and the egg development are tightly linked to how the mosquito transmits the disease-causing virus.

Now a team of entomologists at the University of California, Riverside has identified a microRNA (a short ribonucleic acid molecule) in female Aedes aegypti mosquitoes that when deactivated disrupts the mosquito's blood digestion and egg development - a discovery that could help control the spread of not only dengue and yellow fever but potentially all vector-borne diseases.

MicroRNAs do not code for protein products but play powerful regulatory roles in development and cell growth; their mis-regulation leads to defects, including cancer. The researchers asked if microRNAs were involved in essential functions in female mosquitoes such as blood feeding and egg maturation. These functions are required not only for successful reproduction, but also serve as a foundation for the mosquito's ability to transmit pathogens of devastating human diseases.

In their experiments in the lab, the researchers were screening a number of microRNAs in female Aedes aegypti mosquitoes to study their behavior during blood feeding and reproduction, when they found one microRNA, "miR-275," was highly elevated during egg development.

Next, the researchers developed a method for specific deactivation of miR-275 in Aedes aegypti females and fed these mosquitoes with blood to analyze what effects occur when female mosquitoes no longer have this microRNA at their disposal.

They found that the blood these mosquitoes had fed on remained undigested in their guts. Further, the overall volume of the engorged blood was unusually large, suggesting that the mosquitoes' fluid excretory function had been impeded. The researchers also found that in these mosquitoes, egg development, whose success is dependent on blood digestion, was severely inhibited.

"Our finding is exciting because it gets to the very core of what a vector of diseases is all about," said Alexander Raikhel, a distinguished professor of entomology, whose lab led the study. "We can now knock down a series of events - starting with the digestion of blood and proceeding all the way to egg maturation - simply by eliminating this small molecule, miR-275. In tropical areas of the world, where dengue and yellow fever are often leading causes of hospitalization and death among adults and children, a reduction in the number of Aedes aegypti mosquitoes would be tremendously beneficial."

Study results appear this week in the online edition of the Proceedings of the National Academy of Sciences.

Next in this line of work, Raikhel's lab plans to focus on determining which genes miR-275 targets, what roles these genes play in blood digestion and egg development, and what mechanism underlies the activation and deactivation of miR-275.

Bart Bryant, the first author of the research paper and a postdoctoral researcher in Raikhel's lab, explained that the research team knocked down or "depleted" the miR-275 with an "antagomir" - a small synthetic RNA molecule that in this research study binds with miR-275, preventing it from doing its job of allowing blood digestion and egg development to proceed.

"We think our work has opened the door for exploring how microRNAs regulate critical physiological functions specific to vectors that transmit deadly disease pathogens," Bryant said.
-end-
The study was supported by a 10-year grant to Raikhel from the National Institutes of Health. Raikhel, a member of the National Academy of Sciences, and Bryant were joined in the study by Warren MacDonald, a graduate student in Raikhel's lab.

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 20,500 students. The campus will open a medical school in 2012 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. To learn more, call (951) UCR-NEWS.


University of California - Riverside

Related Mosquitoes Articles from Brightsurf:

Mosquitoes' taste for blood traced to four types of neurons
The female mosquito has an amazing ability to detect blood using her syringe-like ''tongue.'' Now scientists have identified the neurons that give her blood-seeking powers.

Flies and mosquitoes beware, here comes the slingshot spider
Running into an unseen spiderweb in the woods can be scary enough, but what if you had to worry about a spiderweb - and the spider - being catapulted at you?

Study reveals how different mosquitoes respond to light and ti
In a new study, researchers found that night- versus day-biting species of mosquitoes are behaviorally attracted and repelled by different colors of light at different times of day.

Where are arctic mosquitoes most abundant in Greenland and why?
Bzz! It's mosquito season in Greenland. June and July is when Arctic mosquitoes (Aedes nigripes) are in peak abundance, buzzing about the tundra.

How mosquitoes got their taste for human blood and what it means for the future
To predict and help control the spread of mosquito-borne illnesses, it's important to know where and why certain mosquitoes got their taste for biting humans in the first place.

Parents twice as likely to be concerned about ticks than of mosquitoes
When it comes to bug bites, parents are twice as likely to be concerned about ticks as they are about mosquitoes transmitting disease, a new national poll finds.

Mosquitoes are drawn to flowers as much as people -- and now scientists know why
Despite their reputation as blood-suckers, mosquitoes actually spent most of their time drinking nectar from flowers.

Mosquitoes engineered to repel dengue virus
An international team of scientists has synthetically engineered mosquitoes that halt the transmission of the dengue virus.

Engineered mosquitoes cannot be infected with or transmit any dengue virus
Genetically engineered mosquitoes are resistant to multiple types of dengue virus (DENV), according to a study published Jan.

Researchers identify that mosquitoes can sense toxins through their legs
Researchers at LSTM have identified a completely new mechanism by which mosquitoes that carry malaria are becoming resistant to insecticide.

Read More: Mosquitoes News and Mosquitoes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.