Rewarding eco-friendly farmers can help combat climate change

December 02, 2010

COLLEGE PARK, Md. - Financially rewarding farmers for using the best fertilizer management practices can simultaneously benefit water quality and help combat climate change, finds a new study by the University of Maryland's Center for Integrative Environmental Research (CIER).

The researchers conclude that setting up a "trading market," where farmers earn financial incentives for investing in eco-friendly techniques, would result in a double environmental benefit - reducing fertilizer run-off destined for the Chesapeake Bay, while at the same time capturing carbon dioxide headed for the atmosphere.

The study, Multiple Ecosystem Markets in Maryland, advises the state's Department of the Environment how to set up a "nutrient trading market," as proposed in the 2008 state climate action plan. This nutrient trading would operate alongside markets that sell carbon dioxide credits. The CIER study examines the effects of operating both markets simultaneously.

In these markets, farmers who reduce pollutants below a set level would earn credits. They would sell these credits to other operators, such as sewage and water treatment facilities or power plants that have difficulty meeting environmental targets. No direct government subsidies would be involved.

"Everybody can and should win from these markets," says principal investigator Matthias Ruth, who directs the University of Maryland's Center for Integrative Environmental Research. "This could represent an extra revenue stream for farmers, as well as an incentive to use the best nutrient practices that can help clean up the Bay and fight climate change. Taking these conservation steps costs the farmers money, and at the very least a reimbursement for their investment is well-deserved."

Maryland is one of a handful of states considering whether to create these multiple markets.

One key question for policy-makers is whether farmers who achieve reductions in watershed pollution while also capturing CO2 should be able to sell credits in both markets and, in effect, get dual payments for single action.

The study does not recommend a particular answer to this question, but offers policy-makers a series of scenarios - estimates of how the systems will work if farmers can participate in only one or both markets, and whether there should be thresholds before they can take part.

Another key question is whether sufficient carbon dioxide will be captured and traded to justify creation of the market. To determine this, CIER and the World Resources Institute developed a dynamic systems model and projected the likely volumes of carbon dioxide involved.

SPECIFIC FINDINGS"As a practical matter, the carbon market will usually offer less financial reward than nutrient trading, because there isn't that much CO2 captured in this way," explains report co-author Rebecca Gasper, a CIER researcher. "To earn one water credit, a farmer must eliminate one pound of run-off pollutant. To earn one carbon credit, involves a reduction of one metric ton of CO2. It's a lot easier for a power plant operator to achieve that than a farmer."

DUAL BENEFITS

As an example of a best management practice providing the dual environmental benefit, the report points to conservation buffers - putting a green swath of trees or other plants between farm and stream to absorb run-off and filter out pollutants. But, this green buffer can also help capture carbon dioxide, and so help the state meet its CO2 reduction goals. Other practices likely to generate dual environmental benefits include conservation tillage, cover crops and wetland restoration.

DUAL MARKETS?

The nutrient trading market would work similarly to the one set-up to reduce carbon emissions under RGGI, the multi-state Regional Greenhouse Gas Initiative that Maryland has joined.

The fulcrum of the nutrient market is a target level called the Total Maximum Daily Load. It's the maximum amount of phosphorous and nitrogen that Maryland farmers can allow to run into streams. The U.S. EPA is expected to finalize this target in December. If a farmer uses more eco-friendly methods and produces lower levels of pollutants that fall below this target, these can be sold as credits to someone else who is running above the target level. These would be traded in the nutrient market.

"Setting up this system will require a delicate hand," says Ruth. "Farmers taking part will face a steep learning curve, and if the system's too complicated or burdensome, they'll likely not take advantage of it."

"In carefully thinking through the options for how to operate and potentially combine nutrient and carbon markets, Maryland is moving out in front as a national leader," Gasper says. "Linking multiple markets is appealing because of its potential for preserving and restoring ecosystems - particularly if other Bay states decided to participate or set up their own programs."
-end-
FULL REPORT

A copy of the full report is available online: http://www.cier.umd.edu/documents/Multiple_Ecosystem_Markets_MD.pdf

FUNDING

The Maryland Department of the Environment funded the study.

The Center for Integrative Environmental Research (CIER) at the University of Maryland has served as the state's scientific advisor on a series of environmental-economic policy analyses. CIER addresses complex environmental challenges through research that explores the dynamic interactions among environmental, economic and social forces and stimulates active dialogue with stakeholders, researchers and decision makers.

The University of Maryland, the region's largest public research university, provides Maryland with education and research services statewide, supporting its economic and social well-being.

MEDIA CONTACTS

Matthias Ruth
Principal Investigator, CIER Director
301-405-6075 (office)
202-701-6484 (cell)
mruth1@umd.edu

Rebecca Gasper
Co-investigator, CIER researcher
860-670-5620
rgasper@umd.edu

Neil Tickner
Senior Media Relations Associate
University of Maryland
301-405-4622
ntickner@umd.edu

University of Maryland

Related Carbon Articles from Brightsurf:

The biggest trees capture the most carbon: Large trees dominate carbon storage in forests
A recent study examining carbon storage in Pacific Northwest forests demonstrated that although large-diameter trees (21 inches) only comprised 3% of total stems, they accounted for 42% of the total aboveground carbon storage.

Carbon storage from the lab
Researchers at the University of Freiburg established the world's largest collection of moss species for the peat industry and science

Carbon-carbon covalent bonds far more flexible than presumed
A Hokkaido University research group has successfully demonstrated that carbon-carbon (C-C) covalent bonds expand and contract flexibly in response to light and heat.

Metal wires of carbon complete toolbox for carbon-based computers
Carbon-based computers have the potential to be a lot faster and much more energy efficient than silicon-based computers, but 2D graphene and carbon nanotubes have proved challenging to turn into the elements needed to construct transistor circuits.

Cascades with carbon dioxide
Carbon dioxide (CO(2)) is not just an undesirable greenhouse gas, it is also an interesting source of raw materials that are valuable and can be recycled sustainably.

Two-dimensional carbon networks
Lithium-ion batteries usually contain graphitic carbons as anode materials. Scientists have investigated the carbonic nanoweb graphdiyne as a novel two-dimensional carbon network for its suitability in battery applications.

Can wood construction transform cities from carbon source to carbon vault?
A new study by researchers and architects at Yale and the Potsdam Institute for Climate Impact Research predicts that a transition to timber-based wood products in the construction of new housing, buildings, and infrastructure would not only offset enormous amounts of carbon emissions related to concrete and steel production -- it could turn the world's cities into a vast carbon sink.

Investigation of oceanic 'black carbon' uncovers mystery in global carbon cycle
An unexpected finding published today in Nature Communications challenges a long-held assumption about the origin of oceanic black coal, and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?

First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.

How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.

Read More: Carbon News and Carbon Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.