New technique identifies pathogens in patient samples faster, in great detail

December 02, 2013

A team of Danish investigators has shown how to identify pathogens faster, directly from clinical samples. The research, published online ahead of print in the Journal of Clinical Microbiology appears in the journal's January 2014 issue.

The investigators used a technique known as whole genome sequencing to identify and completely characterize bacteria causing urinary tract infections. In just 18 hours, they identified the culprit microorganisms, characterized the pathogens' patterns of antibiotic susceptibility, and identified specific strains.

"Using conventional methodologies this would have taken several days to weeks, and even using whole genome sequencing on cultured bacteria would have taken an extra day," says Frank M. Aarestrup of the Technical University of Denmark, Lyngby, an author on the study.

Their work will help patients heal more quickly and avoid unnecessarily prolonged illness and even death. It will also help prevent outbreaks of hospital-acquired disease, and identify emerging infections.

"Rapid identification of the causative agent, and of any antibiotic resistance is crucial to choosing the correct treatment for individual patients," says Aarestrup. "Choosing the wrong antibiotic will lead to longer infections and in the worst case, deaths."

The investigators also identified bacteria in the patient samples that they did not detect using conventional techniques. "Lactobacillus iners, Gardnerella vaginalis, Prevotella, and A. urinae have all been implicated in [urinary tract infections], even though their precise roles as pathogens and normal colonizers of the genital tract have not been firmly established," write the researchers. They note that by conventional methods A. urinae is rarely identified but frequently misclassified.

The ability to identify strains in patients with repeated infections enables the doctor to know whether the patient's infection is new, or recurrent. And the typing of bacterial strains enables rapid comparison of bacteria from different patients, so that doctors can detect the spread of infections within the hospital, and identify emerging infections.

"Whole genome sequencing may still be too expensive for routine use in most clinical microbial laboratories," the researchers write. But they predict that rapidly falling prices and automation will render it a standard technology for infection detection and control, in and out of the hospital.
-end-
A copy of the manuscript can be found online at http://bit.ly/asmtip1113c.

The Journal of Clinical Microbiology is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

American Society for Microbiology

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.