Even thermally tolerant corals are in hot water when it comes to bleaching

December 02, 2015

Scientists have discovered that corals adapted to naturally high temperatures, such as those off the north west coast of Australia, are nonetheless highly susceptible to heat stress and bleaching.

Coral bleaching happens when sea temperatures rise, causing the breakdown of the symbiosis between coral and their zooxanthellae (the microscopic plants which gives coral most of its colour), which can be fatal for the coral.

Study lead author, Dr Verena Schoepf from the ARC Centre of Excellence for Coral Reef Studies (Coral CoE) at the University of Western Australia's Oceans Institute says the researchers were surprised to find that corals around the Kimberley region in north Western Australia are just as sensitive to heat stress and bleaching as their counterparts from less extreme environments elsewhere.

"We found that exceeding their maximum monthly summer temperatures by 1 degree Centigrade for only a few days is enough to induce coral bleaching," Dr Schoepf says.

"We were surprised because under normal conditions, Kimberley corals can tolerate short-term temperature extremes and regular exposure to air without obvious signs of stress."

With up to 10m tides, the Kimberley region has the largest tropical tides in the world, creating naturally extreme and highly dynamic coastal habitats that corals from more typical reefs could not survive.

"Unfortunately the fact that Kimberley corals are not immune to bleaching suggests that corals living in naturally extreme temperature environments are just as threatened by climate change as corals elsewhere," says Dr Schoepf.

"We found that both branching and massive corals exposed at low tide coped better with heat stress than s corals from deeper water," says co-author Professor Malcolm McCulloch from the Coral CoE.

"However this doesn't mean that they are immune to bleaching," Professor McCulloch says.

The research, which was carried out in partnership with the Western Australian Marine Science Institution, also found that massive corals had a better chance of surviving and recovering from bleaching than branching corals.

The current strong El Nino weather pattern in the Pacific puts many coral reefs at risk of severe bleaching, and recent weather predictions show that the Kimberley region might be particularly affected in 2016.

"With the third global bleaching event underway, it has never been more urgent to understand the limits of coral thermal tolerance in corals," says Professor McCulloch.

Co-authors on the study also included Dr Michael Stat from the Trace and Environmental DNA (TrEnD) Laboratory at Curtin University and Dr James Falter from the Coral CoE at the University of Western Australia.
-end-
Paper:

Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment, by Verena Schoepf, Michael Stat, James L. Falter and Malcolm T. McCulloch is published in the journal Nature Scientific Reports

Images:

Link to Dropbox -- Please use image credits supplied in dropbox https://www.dropbox.com/sh/r2o49v8hqkawcih/AAAkLGyV99dml2D45iqVQyHDa?dl=0

Contacts:

Dr Verena Schoepf
61-(0)-8-6488-3644,
mobile: 61-(0)-416-540-415,
verena.schoepf@uwa.edu.au

Professor Malcolm McCulloch
61-(0)-457-939-937
malcolm.mcculloch@uwa.edu.au

Eleanor Gregory, Communications Manager
61-(0)-428-785-895
eleanor.gregory@jcu.edu.au

ARC Centre of Excellence in Coral Reef Studies

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.