Nav: Home

New tool uses UV light to control inflammation

December 02, 2016

Black light does more than make posters glow. Cornell researchers have developed a chemical tool to control inflammation that is activated by ultraviolet (UV) light.

The method will allow scientists to study inflammation and the immune system, and may one day prove effective as a targeted therapy for inflammatory diseases, while minimizing side effects to healthy tissues.

The researchers, who reported their results in a study published in October in the journal Chemical Science, designed a small molecule that is capable of controlling an immune response when exposed to UV light radiation.

"Currently, there aren't a lot of tools that are able to manipulate the immune system in a spatio-temporal fashion," said Pamela Chang, assistant professor of microbiology and immunology, and the paper's senior author. Bibudha Parasar, a graduate student in Chang's lab, is the paper's first author.

"We are pushing the forefront of developing new technologies to control inflammation and the immune system, with the ultimate goal of being able to study these biological pathways and perhaps develop therapies for inflammatory diseases," Chang said.

Inflammation is caused by the immune system as one of the body's responses to eliminate infectious pathogens and other foreign or dangerous agents. When inflammation becomes chronic, it can lead to a host of diseases, including asthma, multiple sclerosis, rheumatoid arthritis, colitis and Crohn's disease.

The researchers created a chemical probe that inhibits a reaction mediated by enzymes called histone deacetylases (HDACs). These enzymes regulate genes that turn on when the immune system is challenged and promote inflammation. HDACs also have inhibitors that suppress this inflammatory response, and the probe specifically activates these inhibitors but only in the presence of UV light. This is especially useful since HDACs are ubiquitous and have other biological effects, and most drugs affect the entire system, leading to unintended consequences.

"If you turned off all the HDACs in the body, you would probably be hitting a lot of pathways that you didn't want to turn off," said Chang. "We can control when and where we turn off the HDACs using light. The idea is that you can actually target the tissue that has chronic inflammation and regulate it by selectively inhibiting HDACs in the tissue that's affected."

Photodynamic therapies are being developed and have existing infrastructure in the clinic for the potential use of the new tool to inhibit inflammation in patients with inflammatory diseases, Chang said.
-end-
The study was supported by a President's Council of Cornell Women Affinito-Stewart Grant.

Cornell University

Related Immune System Articles:

The immune system may explain skepticism towards immigrants
There is a strong correlation between our fear of infection and our skepticism towards immigrants.
New insights on how pathogens escape the immune system
The bacterium Salmonella enterica causes gastroenteritis in humans and is one of the leading causes of food-borne infectious diseases.
Understanding how HIV evades the immune system
Monash University (Australia) and Cardiff University (UK) researchers have come a step further in understanding how the human immunodeficiency virus (HIV) evades the immune system.
Carbs during workouts help immune system recovery
Eating carbohydrates during intense exercise helps to minimise exercise-induced immune disturbances and can aid the body's recovery, QUT research has found.
A new model for activation of the immune system
By studying a large protein (the C1 protein) with X-rays and electron microscopy, researchers from Aarhus University in Denmark have established a new model for how an important part of the innate immune system is activated.
Guards of the human immune system unraveled
Dendritic cells represent an important component of the immune system: they recognize and engulf invaders, which subsequently triggers a pathogen-specific immune response.
How our immune system targets TB
Researchers have seen, for the very first time, how the human immune system recognizes tuberculosis (TB).
How a fungus inhibits the immune system of plants
A newly discovered protein from a fungus is able to suppress the innate immune system of plants.
A new view of the immune system
Pathogen epitopes are fragments of bacterial or viral proteins. Nearly a third of all existing human epitopes consist of two different fragments.
TB tricks the body's immune system to allow it to spread
Tuberculosis tricks the immune system into attacking the body's lung tissue so the bacteria are allowed to spread to other people, new research from the University of Southampton suggests.

Related Immune System Reading:

The Immune System, 4th Edition
by Peter Parham (Author)

How the Immune System Works (The How it Works Series)
by Lauren M. Sompayrac (Author)

Basic Immunology: Functions and Disorders of the Immune System
by Abul K. Abbas MBBS (Author), Andrew H. H. Lichtman MD PhD (Author), Shiv Pillai MBBS PhD (Author)

The Immune System Recovery Plan: A Doctor's 4-Step Program to Treat Autoimmune Disease
by Susan Blum (Author), Mark Hyman (Foreword), Michele Bender (Foreword)

The Immune System: A Very Short Introduction (Very Short Introductions)
by Paul Klenerman (Author)

The Anti-Inflammatory Diet & Action Plans: 4-Week Meal Plans to Heal the Immune System and Restore Overall Health
by Dorothy Calimeris (Author), Sondi Bruner (Author)

The Immune System, 3rd Edition
by Peter Parham (Author)

A Cure Within: Scientists Unleashing The Immune System to Kill Cancer
by Neil Canavan (Author)

Boost Your Immune System: 7 Steps You Can Start TODAY To Regain Your Health and Prevent Disease (Book 1)
by InterConnections, LLC

The Immune System Cure: Optimize Your Immune System in 30 Days-The Natural Way!
by Lorna Vanderheaghe (Author)

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Next Frontier
Colonizing Mars or more distant planets seems like science fiction. But becoming a spacefaring species may be in our near future. This hour, TED speakers on living beyond Earth--and whether we should. Guests include NASA Chief Scientist James Green, science writer Stephen Petranek, MIT Media Lab researcher Lisa Nip, and astronomer Lucianne Walkowicz.
Now Playing: Science for the People

#508 Freedom's Laboratory
This week we're looking back at where some of our modern ideas about science being objective, independent, and apolitical come from. We journey back to the Cold War with historian and writer Audra Wolfe, talking about her newest book "Freedom's Laboratory: The Cold War Struggle for the Soul of Science".