Nav: Home

Faster, noninvasive method to determine the severity of a heart failure

December 02, 2016

Methods currently employed to determine the severity of a heart failure are very limited. Researchers at Eindhoven University of Technology and the Catharina Hospital in Eindhoven have therefore developed a method that is very quick, non-invasive, cost-effective and can be performed at the hospital bedside. Moreover, this method appears to have a predictive value for whether or not a double pacemaker will be successful. Researchers Ingeborg Herold and Salvatore Saporito received their doctorates last month for their study.

Heart failure - when the heart is no longer able to pump enough blood through the body - is a very common problem. To get the right treatment, it is important to measure how well the heart is still able to do its job. There are currently various methods for doing this, but all have their limitations. Sensors often need to be placed in the large arteries, via the shoulder or neck, and that is quite an invasive procedure. MRI is a possibility, but not for patients that are seriously ill. Patients that are short of breath nearly always undergo blood analysis, a method that examines the concentration of a particular protein in the blood and provides a very good, patient-friendly indicator, but it takes several hours before the outcome is known.

The Eindhoven researchers have developed a patient-friendly method that uses an echo scanner, which is known mainly for echoes performed during pregnancy, to determine the severity of heart failure. To do this, they measure the time it takes for the blood to travel from the heart's right ventricle through the lungs to the left ventricle, which is responsible for pumping oxygenated blood through the body. In order to measure this pulmonary transit time (PTT), they inject harmless microbubbles that can be seen clearly by the echo scanner. They then look at the heart and see how long it takes for the bubbles to get from the right to the left ventricle.

It may seem simple enough but there was a significant scientific challenge in calculating an unequivocal PTT for the observed microbubbles that get dispersed in the blood flow. But once that had been solved, they compared the transit time with a number of existing indicators, developing a similar method on the basis of MRI. Comparisons revealed that the PTT measured with the echo scanner provides an excellent indicator for the severity of a heart failure. A healthy heart pumps the blood quickly through the lungs. The longer the PTT, the less well the heart performs. They examined subjects whose heart muscle no longer contracted well, which is the most common type of heart failure. Before the method can be used, there is still work to be done. For example, if it is to be both practical and fast, the analysis will have to be automated.

Another aspect being studied is the extent to which the PTT is able to predict the success of a double pacemaker, whose primary objective is to restore the synchronicity of the two ventricles of the heart. Herold indeed found that there was a fairly firm relationship between the transit time and the success rate. The breaking point is 12.5 seconds; above that, the chance of the pacemaker enabling the heart to perform better reduces. But any application of this indicator requires more research, says Herold. Because the method does not appear to be completely accurate in the prediction, she expects it to be useful in combination with other indicators.

The method is founded on the work of TU/e researcher Massimo Mischi, who has spent a decade working on the development of 'contrast enhanced ultrasound (CEUS)' for analyzing the blood flow using microbubbles as a contrast medium. He has already done this successfully to detect prostate cancer.

Ingeborg Herold gained her doctorate on Thursday 17 November for her thesis 'Assessment of cardiopulmonary function by contrast enhanced echocardiography' while Salvatore Saporito received his PhD the same day for his thesis 'Cardiovascular MRI quantifications in heart failure'.
-end-


Eindhoven University of Technology

Related Heart Failure Articles:

New hope for treating heart failure
Heart failure patients who are getting by on existing drug therapies can look forward to a far more effective medicine in the next five years or so, thanks to University of Alberta researchers.
Activated T-cells drive post-heart attack heart failure
Chronic inflammation after a heart attack can promote heart failure and death.
ICU care for COPD, heart failure and heart attack may not be better
Does a stay in the intensive care unit give patients a better chance of surviving a chronic obstructive pulmonary disease (COPD) or heart failure flare-up or even a heart attack, compared with care in another type of hospital unit?
Tissue engineering advance reduces heart failure in model of heart attack
Researchers have grown heart tissue by seeding a mix of human cells onto a 1-micron-resolution scaffold made with a 3-D printer.
Smoking may lead to heart failure by thickening the heart wall
Smokers without obvious signs of heart disease were more likely than nonsmokers and former smokers to have thickened heart walls and reduced heart pumping ability.
After the heart attack: Injectable gels could prevent future heart failure (video)
During a heart attack, clots or narrowed arteries block blood flow, harming or killing cells in the heart.
Heart failure after first heart attack may increase cancer risk
People who develop heart failure after their first heart attack have a greater risk of developing cancer when compared to first-time heart attack survivors without heart failure, according to a study today in the Journal of the American College of Cardiology.
Scientists use 'virtual heart' to model heart failure
A team of researchers have created a detailed computational model of the electrophysiology of congestive heart failure, a leading cause of death.
Increase in biomarker linked with increased risk of heart disease, heart failure, death
In a study published online by JAMA Cardiology, Elizabeth Selvin, Ph.D., M.P.H., of the Johns Hopkins Bloomberg School of Public Health, Baltimore, and colleagues examined the association of six-year change in high-sensitivity cardiac troponin T with incident coronary heart disease, heart failure and all-cause mortality.
1 in 4 patients develop heart failure within 4 years of first heart attack
One in four patients develop heart failure within four years of a first heart attack, according to a study in nearly 25,000 patients presented today at Heart Failure 2016 and the 3rd World Congress on Acute Heart Failure by Dr.

Related Heart Failure Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".