Nav: Home

High-precision magnetic field sensing

December 02, 2016

Researchers from the Institute for Biomedical Engineering, which is operated jointly by ETH Zurich and the University of Zurich, have succeeded in measuring tiny changes in strong magnetic fields with unprecedented precision. In their experiments, the scientists magnetised a water droplet inside a magnetic resonance imaging (MRI) scanner, a device that is used for medical imaging. The researchers were able to detect even the tiniest variations of the magnetic field strength within the droplet. These changes were up to a trillion times smaller than the seven tesla field strength of the MRI scanner used in the experiment.

"Until now, it was possible only to measure such small variations in weak magnetic fields," says Klaas Prüssmann, Professor of Bioimaging at ETH Zurich and the University of Zurich. An example of a weak magnetic field is that of the Earth, where the field strength is just a few dozen microtesla. For fields of this kind, highly sensitive measurement methods are already able to detect variations of about a trillionth of the field strength, says Prüssmann. "Now, we have a similarly sensitive method for strong fields of more than one tesla, such as those used, inter alia, in medical imaging."

Newly developed sensor

The scientists based the sensing technique on the principle of nuclear magnetic resonance, which also serves as the basis for magnetic resonance imaging and the spectroscopic methods that biologists use to elucidate the 3D structure of molecules.

However, to measure the variations, the scientists had to build a new high-precision sensor, part of which is a highly sensitive digital radio receiver. "This allowed us to reduce background noise to an extremely low level during the measurements," says Simon Gross. Gross wrote his doctoral thesis on this topic in Prüssmann's group and is lead author of the paper published in the journal Nature Communications.

Eliminating antenna interference

In the case of nuclear magnetic resonance, radio waves are used to excite atomic nuclei in a magnetic field. This causes the nuclei to emit weak radio waves of their own, which are measured using a radio antenna; their exact frequency indicates the strength of the magnetic field.

As the scientists emphasise, it was a challenge to construct the sensor in such a way that the radio antenna did not distort the measurements. The scientists have to position it in the immediate vicinity of the water droplet, but as it is made of copper it becomes magnetised in the strong magnetic field, causing a change in the magnetic field inside the droplet.

The researchers therefore came up with a trick: they cast the droplet and antenna in a specially prepared polymer; its magnetisability (magnetic susceptibility) exactly matched that of the copper antenna. In this way, the scientists were able to eliminate the detrimental influence of the antenna on the water sample.

Broad applications expected

This measurement technique for very small changes in magnetic fields allows the scientists to now look into the causes of such changes. They expect their technique to find use in various areas of science, some of them in the field of medicine, although the majority of these applications are still in their infancy.

"In an MRI scanner, the molecules in body tissue receive minimal magnetisation - in particular, the water molecules that are also present in blood," explains doctoral student Gross. "The new sensor is so sensitive that we can use it to measure mechanical processes in the body; for example, the contraction of the heart with the heartbeat."

The scientists carried out an experiment in which they positioned their sensor in front of the chest of a volunteer test subject inside an MRI scanner. They were able to detect periodic changes in the magnetic field, which pulsated in time with the heartbeat. The measurement curve is reminiscent of an electrocardiogram (ECG), but unlike the latter measures a mechanical process (the contraction of the heart) rather than electrical conduction. "We are in the process of analysing and refining our magnetometer measurement technique in collaboration with cardiologists and signal processing experts," says Prüssmann. "Ultimately, we hope that our sensor will be able to provide information on heart disease - and do so non-invasively and in real time."

Development of better contrast agents

The new measurement technique could also be used in the development of new contrast agents for magnetic resonance imaging: in MRI, the image contrast is based largely on how quickly a magnetised nuclear spin reverts to its equilibrium state. Experts call this process relaxation. Contrast agents influence the relaxation characteristics of nuclear spins even at low concentrations and are used to highlight certain structures in the body.

In strong magnetic fields, sensitivity issues had previously restricted scientists to measurement of just two of the three spatial nuclear spin components and their relaxation. They had to rely on an indirect measurement of relaxation in the important third dimension. For the first time, the new high-precision measurement technique allows the direct measurement of all three dimensions of nuclear spin in strong magnetic fields.

Direct measurement of all three nuclear spin components also paves the way for future developments in nuclear magnetic resonance (NMR) spectroscopy for applications in biological and chemical research.

Gross S, Barmet C, Dietrich BE, Brunner DO, Schmid T, Prüssmann KP: Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution. Nature Communications, published online 2 December 2016, doi: 10.1038/NCOMMS13702

ETH Zurich

Related Magnetic Field Articles:

Understanding stars: How tornado-shaped flow in a dynamo strengthens the magnetic field
A new simulation based on the von-Kármán-Sodium (VKS) dynamo experiment takes a closer look at how the liquid vortex created by the device generates a magnetic field.
'Quartz' crystals at the Earth's core power its magnetic field
Scientists at the Earth-Life Science Institute at the Tokyo Institute of Technology report in Nature (Fen.
Brightest neutron star yet has a multipolar magnetic field
Scientists have identified a neutron star that is consuming material so fast it emits more x-rays than any other.
Confirmation of Wendelstein 7-X magnetic field
Physicist Sam Lazerson of the US Department of Energy's Princeton Plasma Physics Laboratory has teamed with German scientists to confirm that the Wendelstein 7-X fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.
High-precision magnetic field sensing
Scientists have developed a highly sensitive sensor to detect tiny changes in strong magnetic fields.
Brilliant burst in space reveals universe's magnetic field
Scientists have detected the brightest fast burst of radio waves in space to date -- locating the source of the event with more precision than previous efforts.
Optical magnetic field sensor can detect signals from the nervous system
The human body is controlled by electrical impulses in the brain, the heart and nervous system.
What did Earth's ancient magnetic field look like?
New work from Carnegie's Peter Driscoll suggests Earth's ancient magnetic field was significantly different than the present day field, originating from several poles rather than the familiar two.
Just what sustains Earth's magnetic field anyway?
Earth's magnetic field shields us from deadly cosmic radiation, and without it, life as we know it could not exist here.
Ironing out the mystery of Earth's magnetic field
The Earth's magnetic field has been existing for at least 3.4 billion years thanks to the low heat conduction capability of iron in the planet's core.

Related Magnetic Field Reading:

Magnetic Fields: Expanding American Abstraction, 1960s to Today
by Valerie Cassel Oliver (Author), Lowery Stokes Sims (Author), Erin Dziedzic (Editor), Melissa Messina (Editor)

In the history of American art, the contributions of African American artists to the development of abstraction have been largely overlooked.

Magnetic Fields aims to change this perspective by focusing on nonrepresentational work by women artists of color, presenting a more complete presentation of American abstraction than has previously been offered.

Intergenerational in scope, Magnetic Fields includes more than 20 artists born between 1891 and 1981, among them Lilian Thomas Burwell, Mildred Thompson, Candida Alvarez, Betty Blayton, Nanette... View Details

Know Your Magnetic Field: Change Your Thinking, Change Your Life.
by William E. Gray (Author)

View Details

Earth's Magnetic Field Secrets: An Illusion Mixed With Reality
by Dennis Brooks (Author)

The Old Theory Until now, there was only one theory regarding the source of Earth's magnetic field, which is the internal dynamo theory. This theory was accepted because it offered the best explanation at the time. Also, much research has been done to support the theory. According to the internal dynamo theory, a dynamo near the center of the planet generates the current that produces the magnetic field. This dynamo would be in the liquid outer core of the planet. It would produce the magnetic axis and project it from the planet. The axis would expand and spread the magnetic field around the... View Details

Power Tools for Health: How Pulsed Magnetic Fields (Pemfs) Help You
by Msc William Pawluk MD (Author), Caitlin Layne (Author)

Power tools revolutionized the building of your family home.
Now they will revolutionize your health.

Power Tools for Health will teach you to how to:
- treat new or chronic health conditions like pain, anxiety, insomnia, diabetes and injuries
- avoid annoying or potentially harmful side effects from pharmaceuticals or other treatments
- enhance and accelerate recovery from surgery

Research shows PEMFs accelerate the healing of almost any cell, tissue, organ, or condition.
Unlike much of modern medicine, which mostly focuses on symptom... View Details

Conversations on Electric and Magnetic Fields in the Cosmos (Princeton Series in Astrophysics)
by Eugene N. Parker (Author)

Today's standard textbooks treat the theoretical structure of electric and magnetic fields, but their emphasis is on electromagnetic radiation and static-electric and magnetic fields. In this book, Eugene Parker provides advanced graduate students and researchers with a much-needed complement to existing texts, one that discusses the dynamic electromagnetism of the cosmos--that is, the vast magnetic fields that are carried bodily in the swirling ionized gases of stars and galaxies and throughout intergalactic space.

Parker is arguably the world's leading authority on solar wind... View Details

The Magnetic Fields
by André Breton (Author), Philippe Soupault (Author), David Gascoyne (Translator)

tr David Gascoyne View Details

Magnetic Fields in the Solar System: Planets, Moons and Solar Wind Interactions (Astrophysics and Space Science Library)
by Hermann Lühr (Editor), Johannes Wicht (Editor), Stuart A. Gilder (Editor), Matthias Holschneider (Editor)

This book addresses and reviews many of the still little understood questions related to the processes underlying planetary magnetic fields and their interaction with the solar wind. With focus on research carried out within the German Priority Program ”PlanetMag”, it also provides an overview of the most recent research in the field.

Magnetic fields play an important role in making a planet habitable by protecting the environment from the solar wind. Without the geomagnetic field, for example, life on Earth as we know it would not be possible. And results from recent space... View Details

NOW 2 kNOW Electro-Magnetic Fields
by Dr. T G D'Alberto (Author)

You're taking a challenging EM Fields course or simimlar while balancing umpteen other classes and maybe even a job. Your chief concern is to figure out, in the shortest time possible, how to successfully do the homework and exam problems. So, let’s get to it. The main stumbling blocks that trip up most students are conquered by a three-time teaching assistant to this course at Cornell. Get the help those students got! From a review of vector calculus to descriptions of the physics behind the math to detailed examples, this book is a must-have companion to any course addressing EM Fields.... View Details

Reconnection of Magnetic Fields: Magnetohydrodynamics and Collisionless Theory and Observations
by J. Birn (Editor), E. R. Priest (Editor)

The reconnection of magnetic fields is one of the most fascinating processes in plasma physics, responsible for phenomena such as solar flares and magnetospheric substorms. The concept of reconnection has developed through recent advances in exploring the magnetospheres of the Sun and Earth through theory, computer simulations and spacecraft observations. The great challenge in understanding it stems from balancing the large volumes of plasma and magnetic fields involved with the energy release with the physical mechanism which relies on the strongly localized behavior of charged particles.... View Details

Magnetic Field(s)
by Ron Loewinsohn (Author), Steve Erickson (Preface)

Organized around the idea that "you can't know what a magnetic field is like unless you're inside of it, " Ron Loewinsohn's first novel opens from the disturbing perspective of a burglar in the midst of a robbery and travels through the thoughts and experiences (both real and imaginary) of a group of characters whose lives are connected both coincidentally and intimately. All of the characters have a common desire to imagine and invent rather horrifying stories about the lives of people around them. As the novel develops, certain phrasings and images recur improbably, drawing the reader into... View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Consequences Of Racism
What does it mean to be judged before you walk through the door? What are the consequences? This week, TED speakers delve into the ways racism impacts our lives, from education, to health, to safety. Guests include poet and writer Clint Smith, writer and activist Miriam Zoila Pérez, educator Dena Simmons, and former prosecutor Adam Foss.
Now Playing: Science for the People

#466 Wildfire
This week we're talking about fire: in particular, wildfires. How they spread and how we manage them, but also the deeper history of wildfires on our planet and how they've been shaping our world for a long, long time. We speak with Andrew Scott, Emeritus Professor of Geology at Royal Holloway, University of London, about his book "Burning Planet: The Story of Fire Through Time", learning about wildfire on our planet now and in deep history. And we catch up with Caroline Weinberg, interm executive director of the March for Science organization, about this year's march on April 14.