Nav: Home

Johns Hopkins researchers uncover more genetic links to brain cancer cell growth

December 02, 2016

Two recently discovered genetic differences between brain cancer cells and normal tissue cells -- an altered gene and a snippet of noncoding genetic material -- could offer clues to tumor behavior and potential new targets for therapy, Johns Hopkins scientists report.

In a report on one of the two findings, published online Sept. 20 in Acta Neuropathologica, the investigators identified alterations in a protein known as ATRX in human brain tumors that arise as part of a genetically inherited condition known as neurofibromatosis type 1 (NF1). The disorder, marked initially by benign tumors on nerves, often leads to brain cancer, and although most NF1-related malignancies are nonaggressive, a fraction are "high-grade" and difficult to treat, experts say.

Study leader Fausto J. Rodriguez, M.D., associate professor of pathology at the Johns Hopkins University School of Medicine and member of the Johns Hopkins Kimmel Cancer Center, says the new study sought to sort out what makes the more aggressive NF1-related tumors genetically different from low grade tumors and normal, healthy cells.

Research from other scientists at Johns Hopkins, he says, had suggested that some tumors, particularly those that affect the nervous system, have mutations in the ATRX gene, which produces proteins that appear to maintain the length of telomeres, repetitive segments of DNA on the ends of chromosomes that typically shorten each time a cell divides. Telomere shortening limits the number of divisions that cells can undergo. By keeping telomeres long, ATRX mutations give cells the ability to endlessly divide, a hallmark of cancer.

To see what role ATRX mutations might play in NF1-related brain cancers, Rodriguez and his colleagues examined samples of both high- and low-grade gliomas -- tumors that arise from parent cells of nerve-supporting cells called glia -- which were removed by surgery from 27 patients with NF1.

They tested the samples for longer telomeres that weren't the product of a protein called telomerase, which helps maintain telomere length in healthy cells and more commonly in other cancers. This nontelomerase-associated telomere lengthening is known as alternative lengthening of telomeres or ALT. They also tested for loss of the protein product of ATRX caused by mutations in this gene.

About a third of the 27 samples had ALT and loss of the ATRX protein. The presence of both factors occurred in seven of 12 patients with high-grade tumors but only two of 14 with low-grade cancers.

If further studies confirm the role of the mutation, Rodriguez says, researchers might be able to develop anticancer agents to target cells with ATRX mutations or ALT to limit telomere length. In the meantime, he adds, gaining a better understanding of aggressive NF1-related tumors allows researchers to develop more realistic models of these cancers in the lab.

In a second study, described online Oct. 14 in Modern Pathology, the Johns Hopkins investigators sought a genetic source that could accurately identify subsets of low-grade pediatric gliomas, the most frequent tumors of the central nervous system in children. Unlike many other types of cancerous tumors, low-grade pediatric gliomas appear to have few genetic mutations, leaving the biology of these cancers a mystery, says Rodriguez.

In an effort to unravel that mystery, Rodriguez and his colleagues focused on the ways those cancer cells regulate the expression of genes or whether they make their constituent proteins. One way to control expression, he explains, is through microRNA, small pieces of noncoding genetic material that control whether a gene's protein is generated from the DNA blueprints inside cell nuclei.

The researchers analyzed the amounts of 800 different microRNAs in nine different types of low-grade gliomas or related cancers. Of all of these, one in particular caught the researchers' eyes: a microRNA called miR-487b, which was consistently underexpressed in tumor tissue compared to healthy cells.

To pin down the role of this microRNA, the researchers artificially increased its levels in lines of laboratory-grown human cancer cells that appeared to make too little of it, in turn bringing down the levels of the protein it affects. Unlike unaltered cancer cells, these new cells formed 30 percent fewer colonies and had decreased levels of other proteins, such as Nestin, by a third. Nestin is known to be important in both early development and in cancers.

Eventually, Rodriguez says, physicians might be able to look at the levels of this and other microRNAs in blood or cerebrospinal fluid to test for the presence of cancer. Researchers might also be able to target microRNAs directly, altering their levels to make cancer cells less likely to form tumors.

"By gaining a better understanding of the fine genetic differences between cancers and healthy tissues, we can develop better therapeutic or prognostic strategies," he says.
-end-
Funding for the studies was provided by the Childhood Brain Tumor Foundation, the Pilocytic/Pilomyxoid Astrocytoma Fund, and Lauren's First and Goal.

Other Johns Hopkins researchers who participated in the Acta Neuropathologica study include Maria Adelita Vizcaino, Jaishri Blakeley and Christopher M. Heaphy. Other Johns Hopkins researchers who participated in the Modern Pathology study include Heather Marion Ames, Ming Yuan, Maria Adelita Vizcaino and Wayne Yu.

Johns Hopkins Medicine

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".