New gene therapy for pseudarthrosis trialed at Kazan University

December 02, 2016

A team headed by Professor Albert Rizvanov, director of the Gene and Cell Technologies Open Lab, created a gene therapy drug that encodes growth factors for the stimulation of blood vessel and bone formation. The combination was highly effective in a patient admitted to the Republican Clinical Hospital in Kazan, Russia. The treatment was approved by the ethical committee, supported by the Ministry of Healthcare of Tatarstan and published in BioNanoScience.

Professor Rizvanov explains: «We combined a demineralized bone transplant with recombinant genetic material, which carries genes for vascular endothelial growth factor, to stimulate new blood vessel growth (angiogenesis), and bone morphogenetic protein to stimulate bone growth (osteogenesis). Thus survival of transplant and bone tissue formation was achieved at the desired location. We were able to translate our basic and pre-clinical research and are the first to document the efficacy of such therapy in a real clinical case of pseudarthrosis».

As the team leader noted, for a long time clinicians have tried standard methods of bone regeneration - osteosynthesis and osteoplasty - when an absent bone part is replaced with allogenic, cadaveric or demineralized bone matrix. In the latter case cells and minerals are removed from an animal bone tissue, and only the matrix is left - a "bone-like sponge" that can be used to fill in defects in the bone to stimulate formation of a new bone. However, current procedures often result in complications, such as resorption of the transplant. Parts of the problem are poor blood supply and low levels of pro-osteogenic growth factors.

Our therapy, a combination of demineralized bone with gene therapy, is a promising solution for the currently existing complication problems in pseudarthrosis and other bone defects and fracture treatments. We now plan to offer such innovative treatments at the Kazan University Clinic as a part of a new clinical trial program at strategic academic unit Translational 7P Medicine for biomedical and translational research.
-end-


Kazan Federal University

Related Gene Therapy Articles from Brightsurf:

Risk of AAV mobilization in gene therapy
New data highlight safety concerns for the replication of recombinant adeno-associated viral (rAAV) vectors commonly used in gene therapy.

Discovery challenges the foundations of gene therapy
An article published today in Science Translational Medicine by scientists from Children's Medical Research Institute has challenged one of the foundations of the gene therapy field and will help to improve strategies for treating serious genetic disorders of the liver.

Gene therapy: Novel targets come into view
Retinitis pigmentosa is the most prevalent form of congenital blindness.

Gene therapy targets inner retina to combat blindness
Batten disease is a group of fatal, inherited lysosomal storage disorders that predominantly affect children.

New Human Gene Therapy editorial: Concern following gene therapy adverse events
Response to the recent report of the deaths of two children receiving high doses of a gene therapy vector (AAV8) in a Phase I trial for X-linked myotubular myopathy (MTM).

Restoring vision by gene therapy
Latest scientific findings give hope for people with incurable retinal degeneration.

Gene therapy/gene editing combo could offer hope for some genetic disorders
A hybrid approach that combines elements of gene therapy with gene editing converted an experimental model of a rare genetic disease into a milder form, significantly enhancing survival, shows a multi-institutional study led by the University of Pennsylvania and Children's National Hospital in Washington, D.C.

New technology allows control of gene therapy doses
Scientists at Scripps Research in Jupiter have developed a special molecular switch that could be embedded into gene therapies to allow doctors to control dosing.

Gene therapy: Development of new DNA transporters
Scientists at the Institute of Pharmacy at Martin Luther University Halle-Wittenberg (MLU) have developed new delivery vehicles for future gene therapies.

Gene therapy promotes nerve regeneration
Researchers from the Netherlands Institute for Neuroscience and the Leiden University Medical Center have shown that treatment using gene therapy leads to a faster recovery after nerve damage.

Read More: Gene Therapy News and Gene Therapy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.