Nav: Home

Research points to Orb2 as a physical substrate for memory strength, retention

December 02, 2016

KANSAS CITY, MO -- How do you remember what happened today in the weeks and months that follow? Researchers at the Stowers Institute for Medical Research have answered a piece of that question in a recent study.

"A simple way to think about our findings is that each experience leaves a stamp in the brain," says Kausik Si, PhD, who led the study. "We have tried to address what such a stamp could be made of and what exactly it may be doing."

Si and colleagues performed a detailed examination of Orb2, a protein previously implicated in long-term memory formation in fruit flies, at different stages of memory. A key characteristic of Orb2 is its prion-like ability to transform from one physical state to another and form clusters, or aggregates, under certain conditions.

Using tools that allow rapid and reversible inactivation of Orb2 protein in neurons, the researchers found that Orb2 can act as a physical substrate for encoding memory and serve as a molecular signature for long-term memory. They also discovered that a DnaJ family chaperone, JJJ2, assists Orb2 aggregation and enhances the formation of long-term memory.

The findings were published in the December 5, 2016, issue of Current Biology and build upon earlier findings from the Si Lab that explain the molecular basis for the establishment of a memory trace.

"Using Drosophila as a model organism to study memory, we were able to exploit two different types of memories," explains Liying Li, first author of the paper and a predoctoral researcher who is completing the research requirements for the Molecular and Integrative Physiology Graduate Program at the University of Kansas Medical Center in the Si Lab.

First, the researchers conducted a male courtship suppression memory experiment, which measures a male fruit fly's ability to learn and retain memory of a female fruit fly's interest in his courtship. In the second type of experiment, the researchers measured a fruit fly's ability to associate one of two odors with a food source.

In these two types of memories, the researchers found three ways in which Orb2 seems to control the dynamics of memory. First, once memory is formed, it can be temporally inactivated and recover in an Orb2-dependent manner. Second, facilitation of Orb2 aggregation by the chaperone protein JJJ2 enhances the ability of fruit flies to form long-lasting memory. Finally, the amount of aggregated Orb2 predicts how stable the memory is. Together, these findings suggest that Orb2 is a constituent of a biochemical trace for memory and may help us understand what leads to loss of memory.

"Our results provide evidence that prion-like proteins play a positive role in memory formation and retention," says Li. "Our work could potentially explain how functional, or good, protein aggregates differ from toxic aggregates. This could potentially help us find ways to regulate or control disease-forming prions."
Other Stowers contributors include Consuelo Pérez Sánchez, Brian D. Slaughter, Ph.D., Yubai Zhao, Mohammed Repon Khan, Ph.D., Jay R. Unruh, Ph.D., and Boris Rubinstein, Ph.D.

This work was supported by the Stowers Institute for Medical Research and the National Institute of Mental Health of the National Institutes of Health (R01MH101440-01A1). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Lay Summary of Findings

What underlies the making of a memory? Using molecular tools to manipulate a prion-like protein in fruit flies, researchers at the Stowers Institute for Medical Research have discovered evidence for specific molecular changes necessary for the formation, storage, and retrieval of memories.

In a study published in Current Biology, Liying Li, Kausik Si, Ph.D., and colleagues report that the protein Orb2 appears to be part of a memory stamp in the brain produced by a particular experience. The researchers also discovered that another protein, JJJ2, assists Orb2 in the formation of long-term memory. This work provides insight on how memories are made and retained in the fruit fly brain. Humans have a protein counterpart to Orb2 called CPEB, which suggests similar mechanisms may be involved in human memory.

About the Stowers Institute for Medical Research

The Stowers Institute for Medical Research is a non-profit, basic biomedical research organization dedicated to improving human health by studying the fundamental processes of life. Jim Stowers, founder of American Century Investments, and his wife, Virginia, opened the Institute in 2000. Currently, the Institute is home to about 500 researchers and support personnel, over 20 independent research programs, and more than a dozen technology development and core facilities. Learn more about the Institute at and about its graduate program at

Stowers Institute for Medical Research

Related Memory Articles:

Taking photos of experiences boosts visual memory, impairs auditory memory
A quick glance at any social media platform will tell you that people love taking photos of their experiences -- whether they're lying on the beach, touring a museum, or just waiting in line at the grocery store.
Think you know how to improve your memory? Think again
Research from Katherine Duncan at the University of Toronto suggests we may have to rethink how we improve memory.
Improving memory with magnets
The ability to remember sounds, and manipulate them in our minds, is incredibly important to our daily lives -- without it we would not be able to understand a sentence, or do simple arithmetic.
Who has the better memory -- men or women?
In the battle of the sexes, women have long claimed that they can remember things better and longer than men can.
New study of the memory through optogenetics
A collaboration between Universitat Autònoma de Barcelona and Harvard University pioneers the increase of memory using optogenetics in mice in Spain.
Peppermint tea can help improve your memory
Peppermint tea can improve long-term and working memory and in healthy adults.
A new glimpse into working memory
MIT study finds bursts of neural activity as the brain holds information in mind, overturns a long-held model.
Memory ensembles
For over forty years, neuro-scientists have been interested in the biological mechanisms underlying the storage of the information that our brain records every day.
What is your memory style?
Why is it that some people have richly detailed recollection of past experiences (episodic memory), while others tend to remember just the facts without details (semantic memory)?
Watching a memory form
Neuroscientists at Rosalind Franklin University of Medicine and Science have discovered a novel mechanism for memory formation.

Related Memory Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".