Nav: Home

New aspect of atom mimicry for nanotechnology applications

December 02, 2016

In nanotechnology control is key. Control over the arrangements and distances between nanoparticles can allow tailored interaction strengths so that properties can be harnessed in devices such as plasmonic sensors. Now researchers at Tokyo Institute of Technology use dendrimers that mimic the electron valency of atoms and link them into arrays using molecules that coordinate with the dendrimer as they would form a covalent electron pair in their valence shell - "electron pair mimicry".

Kimihisa Yamamoto, Ken Albrecht, and colleagues at Tokyo Tech considered the dendritic polyphenylazomethine (DPA), which has a structure that branches out from a central core. "Lewis acid" molecules coordinate to the "Lewis base" sites of DPA. Analysis of the ratio of SnCl2 Lewis acid molecules coordinating with each dendrimer revealed step increases from 2 to 4 to 8 to 16, which mimics the valency of the Bohr atom that has 2, 8, 18, and 32 electrons in the 1st, 2nd, 3rd , and 4th orbitals. This reflects the increase in the number of molecules that can coordinate with the dendrimer with increasing distance from the core, as the number of dendrimer branches and electron density increases.

Yamamoto's team analysed the coordination of DPA with a stronger binding Lewis acid - triphenylmethylium (TPM) - bound to the rod-like molecule phenylene ethynylene. The phylene ethynlene backbone is rigid enough that the acid cations at either end cannot then bind to the same dendrimer. Instead a polymer chain of dendrimers forms. Using a different starting dendrimer (ZnPG4 instead of DPAG4) - which has a core valency of four instead of two - led to the formation of two dimensional polymerisation of the dendrimers, producing a 2D array of nanocontainers for that can accumulate other Lewis acids into the outer orbitals.

The work describes "a new aspect of atom mimicry" conclude the researchers. "The geometry and pitch can be controlled by the design of the dendrimer and the linker and are potentially applicable to plasmonics (after seed-mediated growth) and nanoelectrode grids (which are also useful as electrocatalysts)."

Background

Bohr atom


The Bohr model of the atom set out by Niels Bohr and Ernest Rutherford in 1913 describes the atom as a positive nucleus surrounded by electrons in different shells or energy levels. Each shell has a prescribed number of electrons that can occupy it - that is, two electrons can occupy the first shell, eight the next, and eighteen the next, and so on.

While there are aspects of the atom behaviour that the model does not cover, it is particularly successful at explaining the spectral emission lines. When excited, an electron can jump to the next energy level. When it returns to the initial energy level, the difference in the energies is emitted as light at the specific wavelength equivalent to the energy difference.

Where a shell is not full, the atom can bond with another chemical species. In this way the valency of an atom describes how full the electron shell is and how readily bonds can form. The electron density gradient of dendrimers moving radially from the core to the more branched outer regions dictates how many Lewis acid coordinating molecules it can accommodate and in this way it mimics the energy levels of the Bohr atom.

What is a Lewis acid

A Lewis acid is a chemical species that can accept a lone pair of electrons from a chemical that can donate a lone pair, that is, from a Lewis base. This behaviour is defined by the electron structure of the chemical. Lewis acids include acidic compounds but also metal cations.

When the dendrimer coordinates with the Lewis acids it takes the place of the Lewis base that would donate an electron pair. The researchers describe the di-Lewis acid compound (linker molecule) as electron pair mimicry.

Isosbestic points

When two chemicals react the amount of light absorbed can change depending on how much light the products versus the reactants absorb. If the products and reactants absorb the same amount of light at a particular wavelength, it is described as the isosbestic point.

The researchers used isosbestic points to identify the step increases in Lewis acid reacting with the dendrimers. A wavelength shift in the isosbestic point indicates coordination of the Lewis acid to the subsequent layer of the dendrimer.
-end-


Tokyo Institute of Technology

Related Electrons Articles:

Deceleration of runaway electrons paves the way for fusion power
Fusion power has the potential to provide clean and safe energy that is free from carbon dioxide emissions.
Shining light on low-energy electrons
The classic method for studying how electrons interact with matter is by analyzing their scattering through thin layers of a known substance.
Ultrafast nanophotonics: Turmoil in sluggish electrons' existence
An international team of physicists has monitored the scattering behavior of electrons in a non-conducting material in real-time.
NASA mission uncovers a dance of electrons in space
NASA's MMS mission studies how electrons spiral and dive around the planet in a complex dance dictated by the magnetic and electric fields, and a new study revealed a bizarre new type of motion exhibited by these electrons.
'Hot' electrons don't mind the gap
Rice University scientists discover that 'hot' electrons can create a photovoltage about a thousand times larger than ordinary temperature differences in nanoscale gaps in gold wires.
Electrons used to control ultrashort laser pulses
We may soon get better insight into the microcosm and the world of electrons.
Supercool electrons
Study of electron movement on helium may impact the future of quantum computing.
Two electrons go on a quantum walk and end up in a qudit
There is a variety of physical systems that can be used to implement a separate quantum bit, but significantly less research has been done into systems of several qubits or qudits.
Radiation that knocks electrons out and down, one after another
Researchers at Japan's Tohoku University are investigating novel ways by which electrons are knocked out of matter.
Controlling electrons in time and space
A new method has been developed to control electrons being emitted from metal tips.

Related Electrons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".