Nav: Home

Controlling the optical properties of solids with acoustic waves

December 02, 2019

One of the main challenges in materials science research is to achieve high tunability of the optical properties of semiconductors at room temperature. These properties are governed by "excitons", which are bound pairs of negative electrons and positive holes in a semiconductor.

Excitons have become increasingly important in optoelectronics and the last years have witnessed a surge in the search for control parameters - temperature, pressure, electric and magnetic fields - that can tune excitonic properties. However, moderately large changes have only been achieved under equilibrium conditions and at low temperatures. Significant changes at ambient temperatures, which are important for applications, have so far been lacking.

This has now just been achieved in the lab of Majed Chergui at EPFL within the Lausanne Centre for Ultrafast Science, in collaboration with the theory groups of Angel Rubio (Max-Planck Institute, Hamburg) and Pascal Ruello (Université de Le Mans). Publishing in Science Advances, the international team shows, for the first time, control of excitonic properties using acoustic waves. To do this, the researchers launched a high-frequency (hundreds of gigahertz), large-amplitude acoustic wave in a material using ultrashort laser pulses. This strategy further allows for the dynamical manipulation of the exciton properties at high speed.

This remarkable result was reached on titanium dioxide at room temperature, a cheap and abundant semiconductor that is used in a wide variety of light-energy conversion technologies such as photovoltaics, photocatalysis, and transparent conductive substrates.

"Our findings and the complete description we offer open very exciting perspectives for applications such as cheap acousto-optic devices or in sensor technology for external mechanical strain," says Majed Chergui. "The use of high-frequency acoustic waves, as those generated by ultrashort laser pulses, as control schemes of excitons pave a new era for acousto-excitonics and active-excitonics, analogous to active plasmonics, which exploits the plasmon excitations of metals."

"These results are just the beginning of what can be explored by launching high-frequency acoustic waves in materials," adds Edoardo Baldini, the lead author of the article who is currently at MIT. "We expect to use them in the future to control the fundamental interactions governing magnetism or trigger novel phase transitions in complex solids".
-end-
Other contributors

University of the Basque Country
Max Planck Institute for the Structure and Dynamics of Matter
Simons Foundation (Flatiron Institute)
CNRS Joint Research Units

Reference

Edoardo Baldini, Adriel Dominguez, Tania Palmieri, Oliviero Cannelli, Angel Rubio, Pascal Ruello, Majed Chergui. Exciton control in a room temperature bulk semiconductor with coherent strain pulses. Science Advances 29 November 2019. DOI: 10.1126/sciadv.aax2937

Ecole Polytechnique Fédérale de Lausanne

Related Acoustic Waves Articles:

Light, sound, action: Extending the life of acoustic waves on microchips
Data centres and digital information processors are reaching their capacity limits and producing heat.
Scientists use phononic crystals to make dynamic acoustic tweezers
A research team led by Prof. ZHENG Hairong from the Shenzhen Institutes of Advanced Technology (SIAT) of the Chinese Academy of Sciences use phononic crystals to make dynamic acoustic tweezers.
Acoustic growth factor patterning
For optimally engineered tissues, it is important that biological cues are delivered with appropriate timing and to specific locations.
Researchers create a new acoustic smart material inspired by shark skin
USC researchers created a new sharkskin-inspired smart material that allows shifts in acoustic transmission on demand using magnets.
In acoustic waves, engineers break reciprocity with 'spacetime-varying metamaterials'
Working in an emerging field known to as 'spacetime-varying metamaterials,' University at Buffalo engineers have demonstrated the ability to break reciprocity in acoustic waves.
New type of curved acoustic beams to provide manipulations with nanoparticles
Scientists of Tomsk Polytechnic University and Tomsk State University jointly with their colleagues from Spain modeled and experimentally confirmed the existence of a new type of curved acoustic wave beams -- acoustical hooks.
Study traces evolution of acoustic communication
A study tracing acoustic communication across the tree of life of land-living vertebrates reveals that the ability to vocalize goes back hundreds of millions of years, is associated with a nocturnal lifestyle and has remained stable.
Compact broadband acoustic absorber with coherently coupled weak resonances
Recently, the research teams from Tongji University and The Hong Kong Polytechnic University demonstrate that a compact broadband acoustic absorber can be achieved with coherently coupled 'weak resonances' (resonant sound absorbing systems with low absorption peaks).
Acoustic focusing to amass microplastics in water
Microplastics suspended in water can be gathered using acoustic forces in microchannels.
Controlling the optical properties of solids with acoustic waves
Physicists from Switzerland, Germany, and France have found that large-amplitude acoustic waves, launched by ultrashort laser pulses, can dynamically manipulate the optical response of semiconductors.
More Acoustic Waves News and Acoustic Waves Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Nina
Producer Tracie Hunte stumbled into a duet between Nina Simone and the sounds of protest outside her apartment. Then she discovered a performance by Nina on April 7, 1968 - three days after the assassination of Dr. Martin Luther King Jr. Tracie talks about what Nina's music, born during another time when our country was facing questions that seemed to have no answer, meant then and why it still resonates today.  Listen to Nina's brother, Samuel Waymon, talk about that April 7th concert here.