Nav: Home

LJI researchers reveal unexpected versatility of an ancient DNA repair factor

December 02, 2019

LA JOLLA, CA--If a bone breaks or a tendon snaps, you know to seek treatment immediately. But your most fragile and precious cellular commodity, chromosomal DNA, breaks with astounding frequency--some estimate as many as 10,000 times a day per cell--usually without consequence. That's because legions of DNA repair proteins prevent genomic catastrophe by repairing DNA damaged by chemical or physical mutagens or just normal cellular wear and tear. Proteins dedicated to these tasks are common to all species. In fact, life as we (or bacteria) know it cannot exist without proteins dedicated to DNA repair.

New work from the lab of La Jolla Institute for Immunology (LJI) investigator Anjana Rao, Ph.D., reveals a previously unrecognized activity for one DNA repair factor highly conserved through evolution. In a study published in the Dec. 2, 2019, issue of Molecular Cell, they report that mouse lymphocytes engineered to lack that protein (known as HMCES and pronounced Hem'-sez) cannot recombine their DNA in a manner necessary to make new classes of antibodies, called Immunoglobulins G or A (IgG or IgA).

That finding means that HMCES, previously reported to repair nicks in single DNA strands, also participates in what is called alternative end joining, which as its name suggests is a secondary strategy used by mammalian cells to rejoin severe cuts across both strands of the double helix. These and other recent reports suggest that a humble DNA repair factor whose history likely dates back at least three billion years performs multiple tasks to guard cells against genomic instability.

"When activated, normal B lymphocytes snip out a DNA segment that encodes antibodies called IgM and then reconnect the strand in order to make other more potent classes of antibodies," says Vipul Shukla, Ph.D., the study's first author, describing a DNA editing trick that immunologists call class switch recombination (CSR). "People have known for decades that immune cells use this kind of gene editing as a way to make potent antibodies. We found that HMCES not only recognizes these double strand breaks but helps reseal them."

The Rao lab, which first reported and since then has extensively studied has recently focused on DNA-modifying epigenetic regulators called TET proteins, became interested in HMCES because it had been reported to bind to DNA chemically modified by TET. Reasoning that HMCES and TET proteins might be engaged in similar biological tasks, they genetically "knocked out" the HMCES gene in experimental mice, predicting that animals would display blood cell defects or even cancer, outcomes often associated with TET gene mutations. Surprisingly, that didn't happen: the new paper reports that blood cells from HMCES-deficient mice were normal and showed little disruption in TET-dependent DNA modifications.

However, the fact that normal, activated B lymphocytes express abundant RNA encoding HMCES prompted the group to compare immune responses in HMCES-deficient versus normal adult B cells. Following antigen stimulation, normal B cells predictably "switch" their antibody repertoire from IgM to IgG antibodies. By contrast, lymphocytes from HMCES-deficient mice were less efficient at making IgG antibodies, presumably because the CSR machinery that "recombines" DNA to convert IgM to other IgG isotypes is less operational without HMCES.

"In this study we used lymphocytes as a model system to identify a new role for HMCES in a lesser-known pathway of DNA double-strand break repair," says Shukla, referring to alternative end-joining. "But that pathway is not only active in immune cells. The kind of DNA double-stranded break repair we describe here likely occurs in response to DNA damage in any cell of the body."

The new study provides evidence that HMCES is versatile enough to accomplish entirely different tasks in response to DNA damage, depending on need. For example, in an earlier study, University of Toronto collaborators Levon Halabelian, Ph.D., and Cheryl Arrowsmith, Ph.D., showed how HMCES can carry out these multiple roles in the cell by determining the 3D structure of HMCES bound to several types of 'broken' DNA strands. In the current study, their structures revealed how HMCES can also orchestrate the alternative end joining activities in B cells. Others reported that in some contexts HMCES shields damaged single-stranded DNA from further degradation.

Moreover, HMCES is the only human protein that contains a domain conserved in the bacterial protein YedK, which participates in repair of E. coli DNA. Senior co-author L. Aravind, Ph.D., of the National Center for Biotechnology Information and National Library of Medicine (NCBI, NLM) notes that these findings hint that in the course of evolution, HMCES-like proteins acquired the capacity to recognize and respond appropriately to diverse signs of genomic distress.

"Many DNA repair proteins have ancient origins," he says. "HMCES adds to that repertoire and shows that mammalian cells have recruited repair strategies from bacteria to mediate DNA joining in a physiological double strand-break repair mechanism, in this case CSR."

Shukla concurs: "Nature has clearly found a way to use this extremely important protein to promote the well-being of many organisms."
The study was funded by fellowships from the Leukemia and Lymphoma Society (to VS, grant ID 5463-18) and CONACYT/UCMEXUS (to DSC). It was also supported by the Canadian Institutes of Health Research (FDN154328), and Natural Sciences and Engineering Research Council (RGPIN-2015-05939) and the Structural Genomics Consortium to C.H.A., National Institutes of Health (NIH) grants R35 CA210043 and R01 AI109842 to A.R., and intramural funds of the National Library of Medicine, NIH, USA, to L.A.

Full citation: Vipul Shukla, Levon Halabelian, Sanjana Balagere, Daniela Samaniego-Castruita, Douglas E. Feldman,Cheryl H Arrowsmith, Anjana Rao, L. Aravind. HMCES functions in the alternative end-joining pathway of the DNA DSB repair during class switch recombination in B cells. Molecular Cell, 2019.

DOI: 10.1016/j.molcel.2019.10.031

About La Jolla Institute for Immunology

The La Jolla Institute for Immunology is dedicated to understanding the intricacies and power of the immune system so that we may apply that knowledge to promote human health and prevent a wide range of diseases. Since its founding in 1988 as an independent, nonprofit research organization, the Institute has made numerous advances leading toward its goal: life without disease.

La Jolla Institute for Immunology

Related Science Articles:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.
Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.
Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.
Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.
World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.
PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.
Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.
Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.
More Science News and Science Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at