Nav: Home

The impact of molecular rotation on a peculiar isotope effect on water hydrogen bonds

December 02, 2019

The physicochemical and biological properties of hydrogen-bonded systems are significantly affected by nuclear quantum effects including zero-point energies of vibrational modes, proton delocalization, and tunneling effect. These originate from the extremely low nuclear mass of hydrogen; thus, hydrogen-bonded systems show remarkable isotope effects upon deuteration. In the 1930s, Ubbelohde first proposed that deuteration elongates and weakens hydrogen bonds in many hydrogen-bonded systems. Ever since, such an isotope effect has been widely confirmed and is nowadays well known as the "Ubbelohde effect." In contrast, deuterating water molecules in liquid water and ice elongates but strengthens hydrogen bonds. Despite intensive experimental and theoretical studies in more than three-quarters of a century, the molecular-level origin of this peculiar isotope effect on water hydrogen bonds has been unclear.

Very recently, researchers led by Toshiki Sugimoto, Associate Professor at the Institute for Molecular Science, have tackled the longstanding mystery: how do more expanded D2O aggregates form stronger hydrogen bonds than H2O aggregates, in contrast to the hydrogen-bonded systems composed of bulky constituent molecules? By means of isotope selective measurements on sublimation of isotope-mixed ice with various H/D isotopic compositions, the researchers have made a new discovery to unravel the mystery; the isotope effect on the strength of hydrogen bonds are governed by two deuteration effects: (1) the bond-strengthening effect derived from zero-point energy of hindered rotational motion, and (2) the bond-weakening (and elongating) effect derived from quantum anharmonic coupling between inter- and intramolecular modes.

The most important concept is that the deuteration effect (1) derived from rotational motion plays crucial roles in the bond breaking process of extremely small and light molecules. In the case of water aggregates, huge isotopic difference in the zero-point energy of hindered rotation brings out a peculiar nature of the bond strengthening effect (1) overwhelming over the bond-weakening effect (2), leading to the unique isotope effect: deuterated water molecules form longer but stronger hydrogen bonds than hydrogenated water molecules. In contrast, in the case of other typical hydrogen-bonded systems composed of larger and heavier constituent molecules, such as oxalic acid dihydrate, benzoic acid, succinic acid, and cyclohexane/Rh(111), the isotopic differences in the zero-point energy of hindered rotation are negligibly small. Therefore, only the bond-weakening effect (2) is predominant in the isotope effect on their binding energy, resulting in the longer and weaker hydrogen bonds in deuterated systems than hydrogenated systems. Thus, the isotopic differences in the strength of hydrogen bonds are determined by a delicate balance between the competing two deuteration effects (1) and (2), while those in hydrogen-bond length, i.e. geometrical isotope effect, are basically dominated by the deuteration effect (2). "These results and concepts provide a new basis for our fundamental understanding of the highly quantum water hydrogen bonds," says Sugimoto.
-end-


National Institutes of Natural Sciences

Related Hydrogen Articles:

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.
World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.
Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.
Observing hydrogen's effects in metal
Microscopy technique could help researchers design safer reactor vessels or hydrogen storage tanks.
The 'Batman' in hydrogen fuel cells
In a study published in Nature on Jan. 31, researchers at the University of Science and Technology of China (USTC) report advances in the development of hydrogen fuel cells that could increase its application in vehicles, especially in extreme temperatures like cold winters.
Paving the way for more efficient hydrogen cars
Hydrogen-powered vehicles emit only water vapor from their tailpipes, offering a cleaner alternative to fossil-fuel-based transportation.
New catalyst produces cheap hydrogen
QUT chemistry researchers have discovered cheaper and more efficient materials for producing hydrogen for the storage of renewable energy that could replace current water-splitting catalysts.
The faint glow of cosmic hydrogen
A study published recently in Nature magazine, in which Ana Monreal-Ibero, a researcher at the Instituto de Astrofísica de Canarias (IAC) is a participant, reveals the presence of a hitherto undetected component of the universe: large masses of gas surrounding distant galaxies.
New technology improves hydrogen manufacturing
INL researchers demonstrated high-performance electrochemical hydrogen production at a lower temperature than had been possible before.
Hydrogen transfer: One thing after the other
Hydride transfer is an important reaction for chemistry (e.g., fuel cells), as well as biology (e.g., respiratory chain and photosynthesis).
More Hydrogen News and Hydrogen Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab