Nav: Home

2D materials boost carrier multiplication

December 02, 2019

Physicists at the Center for Integrated Nanostructure Physics (CINAP), within the Institute for Basic Science (IBS, South Korea), have discovered an intriguing phenomenon, known as carrier multiplication (CM), in a class of semiconductors with incredible thinness, outstanding properties, and possible applications in electronics and optics. Published in Nature Communications, these new findings have the potential to boost the photovoltaics and photodetector fields, and could improve the efficiency of solar cells produced with these ultrathin materials to up to 46%.

An interesting class of 2D materials, the van der Waals layered transition metal dichalcogenides (2D-TMDs), are expected to create the next-generation of optoelectronic devices, such as solar cells, transistors, light emitting diodes (LED), etc. They consist of individual thin layers separated by very weak chemical bonds (van der Waals bonds), and have unique optical properties, high light absorption, and high carrier (electron and hole) mobility. Beyond allowing the option to tune their band gap by changing composition and layer thickness, these materials also offer an ultrahigh internal radiative efficiency of >99%, promoted by the elimination of surface imperfections and large binding energy between carriers.

Absorption of sunlight in semiconducting 2D-TMD monolayers reaches typically 5-10%, which is an order of magnitude larger than that in most common photovoltaic materials, like silicon, cadmium telluride, and gallium arsenide. Despite these ideal characteristics, however, the maximum power conversion efficiency of 2D-TMDs solar cells has remained below 5% due to losses at the metal electrodes. The IBS team in collaboration with researchers at the University of Amsterdam aimed to overcome this drawback by exploring the CM process in these materials.

CM is a very efficient way to convert light into electricity. A single photon usually excites a single electron, leaving behind an 'empty space' (hole). However, it is possible to generate two or more electron-hole pairs in particular semiconductors if the energy of the incident light is sufficiently large, more specifically, if the photon energy is twice the material's bandgap energy. While the CM phenomenon is rather inefficient in bulk semiconductors, it was expected to be very efficient in 2D materials, but was not proved experimentally due to some technical limitations, like proper 2D-TMD synthesis and ultrafast optical measurement. In this study, the team observed CM in 2D-TMDs, namely 2H-MoTe2 and 2H-WSe2 films, for the first time; a finding that is expected to improve the current efficiency of 2D-TMD solar cells, even going beyond the Shockley-Queisser limit of 33.7%.

"Our new results contribute to the fundamental understanding of the CM phenomenon in 2D-TMD. If one overcomes the contact losses and succeeds in developing photovoltaics with CM, their maximum power conversion efficiency could be increased up to 46%," says Young Hee Lee, CINAP director. "This new nanomaterial engineering offers the possibility for a new generation of efficient, durable, and flexible solar cells."

Institute for Basic Science

Related Solar Cells Articles:

Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.
Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.
Solar cells with new interfaces
Scientists from NUST MISIS (Russia) and University of Rome Tor Vergata found out that a microscopic quantity of two-dimensional titanium carbide called MXene significantly improves collection of electrical charges in a perovskite solar cell, increasing the final efficiency above 20%.
Welcome indoors, solar cells
Swedish and Chinese scientists have developed organic solar cells optimised to convert ambient indoor light to electricity.
Mapping the energetic landscape of solar cells
A new spectroscopic method now makes it possible to measure and visualize the energetic landscape inside solar cells based on organic materials.
Solar energy becomes biofuel without solar cells
Soon we will be able to replace fossil fuels with a carbon-neutral product created from solar energy, carbon dioxide and water.
A good first step toward nontoxic solar cells
A team of engineers at Washington University in St. Louis has found what they believe is a more stable, less toxic semiconductor for solar applications, using a novel double mineral discovered through data analytics and quantum-mechanical calculations.
Organic solar cells will last 10 years in space
Scientists from the Skoltech Center for Energy Science and Technology, the Institute for Problems of Chemical Physics of RAS, and the Department of Chemistry of MSU presented solar cells based on conjugated polymers and fullerene derivatives, that demonstrated record-high radiation stability and withstand gamma radiation of >6,000 Gy raising hopes for their stable operation on the near-earth orbit during 10 years or even longer.
Next-gen solar cells spin in new direction
A nanomaterial made from phosphorus, known as phosphorene, is shaping up as a key ingredient for more sustainable and efficient next-generation perovskite solar cells.
Caffeine gives solar cells an energy boost
Scientists from the University of California, Los Angeles (UCLA) and Solargiga Energy in China have discovered that caffeine can help make a promising alternative to traditional solar cells more efficient at converting light to electricity.
More Solar Cells News and Solar Cells Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab