Nav: Home

Decades old debate settled: Golgi key to maintenance of molecule-sorting station in cells

December 02, 2019

On a daily basis, multitudes of molecules enter each cell in our body. These can be nutrients or signal molecules or pathogenic microorganisms. An organelle in the cell directs these molecules to other stations for further processing. This organelle is called the endosome. If the pathways by which this sorting occurs fails at any stage, several diseases such as neurodegenerative diseases and certain cancers can occur. Thus, a better understanding of the steps in these pathways is of utmost importance.

In a recent study published in Communications Biology, a group of scientists from Japan and Austria, led by Prof Jiro Toshima from the Tokyo University of Science, reports a new finding regarding the maintenance and functioning of the endosome.

Conventional knowledge is that two processes are necessary for the upkeep of endosomes: a) sacs of molecules constantly form at the cell membrane, are transported to the endosome, and fuse into it; b) protein-containing vesicles transported from the Golgi (another cell organelle) fuse with the endosome.

The researchers of this study claim that this is not the case.

They introduce genetic mutations and drugs into yeast cells to inhibit each of these transport processes at a time. When transport from the Golgi does not occur, a protein essential to the upkeep of the endosome, Rab5, is not activated, and endosome formation is affected. When cell transport from the membrane is inhibited, there is no effect on the endosome. Thus, essentially, transport from the Golgi is necessary and that from the cell membrane is dispensable, or not as crucial. "Our results provide a different view of endosome formation and identify the Golgi as critical for the optimal maintenance and functioning of endosomes," Prof Toshima says. This study clarifies only a fraction of the molecule-sorting pathway in cells. But, this is certainly one giant step in the research in this field. Perhaps, the insights from this study will soon appear on the pages of cell biology textbooks.
-end-
About the Tokyo University of Science

Tokyo University of Science (TUS) is a well-known and respected university, and the largest science-specialized private research university in Japan, with four campuses in central Tokyo and its suburbs and in Hokkaido. Established in 1881, the university has continually contributed to Japan's development in science through inculcating the love for science in researchers, technicians, and educators.

With a mission of "Creating science and technology for the harmonious development of nature, human beings, and society", TUS has undertaken a wide range of research from basic to applied science. TUS has embraced a multidisciplinary approach to research and undertaken intensive study in some of today's most vital fields. TUS is a meritocracy where the best in science is recognized and nurtured. It is the only private university in Japan that has produced a Nobel Prize winner and the only private university in Asia to produce Nobel Prize winners within the natural sciences field.

Website: https://www.tus.ac.jp/en/mediarelations/

About Professor Jiro Toshima from the Tokyo University of Science

Dr Jiro Toshima is at present a Professor with the Department of Biological Science and Technology at the Tokyo University of Science, Japan. Having begun research in cell biology and related fields in 1999, he has co-authored over 41 publications, and is the lead author of the present paper. From September 2017 to August 2019, he served as a Councillor in the Japanese Biochemical Society.

Funding information

This research was supported by grants to Junko Y. Toshima (JSPS KAKENHI Grant #26440067, the Takeda Science Foundation, the Novartis Foundation, Japan) and to Jiro Toshima (JSPS KAKENHI Grant #19K06571, the Life Science Foundation of Japan, the Uehara Memorial Foundation and the Takeda Science Foundation).

Tokyo University of Science

Related Cell Membrane Articles:

Proof of sandwiched graphene-membrane superstructure opens up a membrane-specific drug delivery mode
Researchers from the Institute of Process Engineering (IPE) of the Chinese Academy of Sciences and Tsinghua University (THU) proved a sandwiched superstructure for graphene oxide (GO) that transport inside cell membranes for the first time.
Membrane madness: The ins and outs of moving materials through the cell
The cell membrane is a fatty layer that forms a border between the inside of the cell, its various structures and the outside world.
Cell membrane as coating materials to better surface engineering of nanocarriers
Coating natural cell membranes on synthetic nanocarriers represents an innovative strategy of surface engineering.
Too-tight membrane keeps cells from splitting
Scientists uncover how one protein keeps conditions 'just right' so that cells can easily divide into two identical daughter cells.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
Drug-induced cellular membrane complexes induce cancer cell death
Biochemistry and Molecular Biology researchers at the Hollings Cancer Center at the Medical University of South Carolina delved into the microscopic world of cell surface sphingolipids and discovered a new sub-cellular complex, as described in the January 2019 issue of Journal of Biological Chemistry.
New transport mechanism of nanomaterial through a cell membrane: membrane stretching
The team of theoretical physics at Universitat Rovira i Virgili in Tarragona, led by Dr.
Clearest view ever of cell membrane yields unexpected structure, research possibilities
Working with a Nobel Prize-winning biophysicist, a team of researchers at Virginia Commonwealth University has gained the clearest view yet of a patch of cell membrane and its components, revealing unexpected structures and opening up new possibilities for pharmaceutical research.
Microbes 'MacGyver' membrane transport
A general concept in biology is that cells use two different systems to transport substances across their membrane: selective pores, which allow passive transport driven by a concentration gradient, and active transport complexes, which use energy to transport substances against a gradient.
Team gets a closer look at how proteins meet on the cell membrane
At last, the researchers have defined the molecular basis of the cell membrane in integrin activation.
More Cell Membrane News and Cell Membrane Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab