Nav: Home

Testing barley's salt tolerance is a numbers game

December 02, 2019

Plant scientists are striving to cultivate crops that can cope with saline soils in the hope that this may help feed the world's growing population, particularly in the face of climate change. Now, KAUST researchers have applied a newly developed robust statistical technique to examine how different barley plant traits affect yields grown in saline and nonsaline conditions.

"The problem with traditional regression analyses is that they focus on finding the average, or mean, of a given distribution," says Gaurav Agarwal, who worked on the project under the guidance of his supervisor Ying Sun and in collaboration with plant scientists Stephanie Saade and Mark Tester.

"In plant science, this incomplete picture can be frustrating because we're often more interested in details at the extreme ends of the distribution and what these data can tell us about optimizing crops," says Agarwal.

The two research groups turned to new advanced quantile regression techniques to analyze the traits that influence salt tolerance and yield in barley plants. The team modeled the saline and nonsaline conditions jointly, dividing up the data into different "quantiles" to build up a more detailed picture of the entire distribution. In this way, they could focus their analyses on those plant groups that displayed higher yields and greater tolerance and then examine the main influencing factors.

The team's results provide interesting insights into barley's responses and could inform future crop decisions, particularly in arid parts of the world.

Two key traits help gain high yield under saline conditions. Firstly, the plants' flowering time should not occur too late in the growing season. Late flowering may mean that the plant is affected by increased heat as the season progresses, reducing its ability to produce seeds.

"A more surprising result was that the salinity tolerance of plants increased linearly as the ear number per plant increased," says Agarwal. "However, tolerance then faltered when a plant grew more than three ears. A possible explanation is that the plant can cope with salt stress while producing seeds, but only up to a point, after which generating seeds comes at the expense of salinity tolerance."

"We are keen to expand on these initial results," adds Sun. "Our insights may also help further understanding of mechanisms of salt tolerance in barley and other crops."
-end-


King Abdullah University of Science & Technology (KAUST)

Related Plants Articles:

How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.
Can plants tell us something about longevity?
The oldest living organism on Earth is a plant, Methuselah a bristlecone pine (Pinus longaeva) (pictured below) that is over 5,000 years old.
Plants might be helping each other more than thought
Contrary to the long-held belief that plants in the natural world are always in competition, new research has found that in harsh environments mature plants help smaller ones -- and thrive as a result.
Not all plants are good for you
A new scientific review highlights a significant global health issue related to plants that sicken or kill undernourished people around the world, including those who depend upon these plants for sustenance.
How plants react to fungi
Using special receptors, plants recognize when they are at risk of fungal infection.
Flame retardants -- from plants
Flame retardants are present in thousands of everyday items, from clothing to furniture to electronics.
Directed evolution comes to plants
Accelerating plant evolution with CRISPR paves the way for breeders to engineer new crop varieties.
Plants are also stressed out
What will a three-degree-warmer world look like? When experiencing stress or damage from various sources, plants use chloroplast-to-nucleus communication to regulate gene expression and help them cope.
How plants defend themselves
Like humans and animals, plants defend themselves against pathogens with the help of their immune system.
An easier way to engineer plants
MIT researchers have developed a genetic tool that could make it easier to engineer plants that can survive drought or resist fungal infections.
More Plants News and Plants Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab