Nav: Home

A close look at a sticky situation

December 02, 2019

PITTSBURGH (Dec. 2, 2019) -- Tires gripping the road. Nonslip shoes preventing falls. A hand picking up a pen. A gecko climbing a wall.

All these things depend on a soft surface adhering to and releasing from a hard surface, a common yet incompletely understood interaction. New research published in Proceedings of the National Academy of Sciences (PNAS) finds the missing link between soft surface adhesion and the roughness of the hard surface it touches. The paper, "Linking energy loss in soft adhesion to surface roughness," (DOI: 10.1073/pnas.1913126116) was published in Proceedings of the National Academy of Sciences and was coauthored by Siddhesh Dalvi, Abhijeet Gujrati, Subarna R. Khanal, Lars Pastewka, Ali Dhinojwala, and Tevis D.B. Jacobs.

Dr. Jacobs, assistant professor of mechanical engineering and materials science at the University of Pittsburgh's Swanson School of Engineering, and Dr. Dhinojwala, interim dean and H.A. Morton Professor of Polymer Science at The University of Akron's College of Polymer Science and Polymer Engineering, have used in situ microscopic measurements of contact size to unlock the fundamental physics of how roughness affects soft material adhesion.

"A gecko running up a vertical wall is an excellent example of how nature has developed a solution to stick to rough surfaces," says Dhinojwala. "The key to achieve this adhesion on rough surface is molecular contact. Soft material can conform to rough surfaces and create the molecular contact necessary to stick well. We need a fundamental understanding of the parameters that control adhesion to rough surfaces and the underlying physics."

There are two different parts of the process: what happens when you load up the contact and what happens when you separate it.

Previous theories have proposed how roughness affects the first half of the process, but offer no insight into the second half. This problem is called "adhesion hysteresis," meaning the soft surface contact behaves differently as it encounters the rough surface rather than when pulled away. One way to think about adhesion hysteresis is to think of a small rubber ball. Pressing the ball down against a hard surface expands the area of contact; letting go will cause the area to shrink again, but not in a predictable, symmetrical way. This discovery marks the first model of rough adhesion that can predict both.

The key to this foundational discovery is a close look at the rough surface itself--very, very close.

"People have been measuring roughness for a hundred years, but conventional techniques can't see the small detail," says Jacobs. "We zoomed in, combining multiple techniques, to measure roughness on top of roughness on top of roughness. The texture goes down to the atomic scale for many surfaces."

The group developed a new approach using an electron microscope to measure roughness down to below the scale of a nanometer. One of the surfaces in this study appeared far smoother than two others when measured using conventional techniques; however, when measured down to the atomic scale, it proved to be the roughest of all. This small-scale roughness created a lot more surface area for the soft material to grip. The detailed understanding of the rough surface was the missing link that explained the predicted the surfaces' adhesion behavior.

"Our research answered an important question, but in another sense, it opened up a new line of inquiry," says Jacobs. "There are a lot of interesting questions about what it really means for surfaces to be 'in contact' and how to link what is happening at the atomic-scale to what we observe in full-size, real-world contacts. And we're excited to continue answering them."

University of Pittsburgh

Related Engineering Articles:

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
What can snakes teach us about engineering friction?
If you want to know how to make a sneaker with better traction, just ask a snake.
Engineering a plastic-eating enzyme
Scientists have engineered an enzyme which can digest some of our most commonly polluting plastics, providing a potential solution to one of the world's biggest environmental problems.
A new way to do metabolic engineering
University of Illinois researchers have created a novel metabolic engineering method that combines transcriptional activation, transcriptional interference, and gene deletion, and executes them simultaneously, making the process faster and easier.
More Engineering News and Engineering Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at