Nav: Home

Taste-related protein provides target for drugs to treat neurological disorders

December 02, 2019

GRAND RAPIDS, Mich. (Dec. 2, 2019) -- Understanding how the brain processes sweet, bitter and umami tastes may one day help researchers design more effective drugs for neurological disorders.

Van Andel Institute scientists have for the first time revealed the near atomic-level structure of a calcium homeostasis modulator (CALHM), a type of protein that plays critical roles in processing taste stimuli and mitigating toxicity in brain cells. These proteins work by sensing chemical and electrical changes in their environment -- in the taste buds, for example -- and relaying the information back to the brain.

They also help regulate calcium concentrations and amyloid-beta protein levels in the central nervous system. Previous research has shown that abnormal changes in CALHMs -- and the resulting dysregulation of calcium or build-up of amyloid-beta -- can contribute to Alzheimer's disease, stroke and other neurological conditions.

"This is the first time we've been able to visualize one of these important proteins with such clarity. Until now, we didn't know what they looked like or how they worked," said Wei Lü, Ph.D., an assistant professor at VAI and co-corresponding author of the study, published in Nature. "Our molecular blueprint of calcium homeostasis modulator 2 lays the groundwork for understanding the broader family of CALHMs, which could inform therapeutic development down the road."

The shape of a protein is a key factor in how that protein carries out its function, much like how a specific key only works with a certain lock. In the case of CALHM2, the new images show drastic differences in its structure when it is in its open state versus its inhibited state, providing new insight into how the protein works in varying circumstances.

Importantly, the team also identified an area of the protein that would be an optimal drug target.

"Understanding CALHM2's structure is the first step in understanding exactly how these proteins function, how they impact neurological diseases and how they may be leveraged therapeutically," said Juan Du, Ph.D., an assistant professor at VAI and co-corresponding author of the study. "We look forward to broadening our studies, with the ultimate goal of developing novel medications for CALHM-related disorders."

The findings were made possible by VAI's state-of-the-art David Van Andel Advanced Cryo-Electron Microscopy Suite, which allows scientists to view some of life's smallest components in exquisite detail. VAI's most powerful microscope, the Titan Krios, can visualize molecules 1/10,000th the width of a human hair.
-end-
In addition to Du and Lü, authors include co-first authors Wooyoung Choi and Nicolina Clemente, Ph.D., of VAI; and Weinan Sun, Ph.D., of Howard Hughes Medical Institute-Janelia Research Campus. The Institute's David Van Andel Advanced Cryo-Electron Microscopy Suite and high-performance computing team also contributed to this work.

ABOUT VAN ANDEL INSTITUTE

Van Andel Institute (VAI) is committed to improving the health and enhancing the lives of current and future generations through cutting edge biomedical research and innovative educational offerings. Established in Grand Rapids, Michigan, in 1996 by the Van Andel family, VAI is now home to more than 400 scientists, educators and support staff, who work with a growing number of national and international collaborators to foster discovery. The Institute's scientists study the origins of cancer, Parkinson's and other diseases and translate their findings into breakthrough prevention and treatment strategies. Our educators develop inquiry-based approaches for K-12 education to help students and teachers prepare the next generation of problem-solvers, while our Graduate School offers a rigorous, research-intensive Ph.D. program in molecular and cellular biology. Learn more at vai.org.

Van Andel Research Institute

Related Brain Articles:

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
More Brain News and Brain Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab