Nav: Home

Improving drug delivery for brain tumor treatment

December 02, 2019

SAN DIEGO, December 2, 2019 -- Despite improvements in drug delivery mechanisms, treating brain tumors has remained challenging.

Costas Arvanitis, of Georgia Institute of Technology, studies the processes affecting therapeutic drug penetration into brain tumors. He will present two strategies for improving the delivery of therapeutic agents during a session at the 178th Meeting of the Acoustical Society of America, which will take place Dec. 2-6, at the Hotel del Coronado in San Diego.

The talk, "Controlled drug delivery and release in brain tumors with focused ultrasound," will be presented at 11:30 a.m. PT, Monday, Dec. 2 as part of the session on cavitation nuclei.

"For a bloodborne therapeutic agent to be effective, it must cross the blood vessel wall to reach cancer cells in adequate quantities," said Arvanitis. "However, tumors can thwart their effectiveness in many ways."

While tumors are known to compromise the integrity of the blood brain barrier -- a specialized vessel wall evolved to keep the brain "safe" -- the makeup of the barrier is inconsistent, which prevents drugs from being uniformly distributed throughout the tumor. Unfortunately, increasing dosages to help improve drug delivery is not possible due to the adverse effects caused by drug interactions with healthy tissue, and drug penetration to the tumor core remains limited.

"To overcome these obstacles, new nanoparticle drug formulations that are associated with lower toxicity and clearance times have been proposed," he said. "Despite progress, improved nanoparticle penetration into brain tumors remains a major challenge."

By combining focused ultrasound methods with different nanoparticle formulations, Arvanitis and his students, Yutong Guo and Chulyong Kim, have investigated two strategies for improving drug penetration into brain tumors. One approach is to use microbubbles to help overcome vascular barriers within the brain tumors and improve nanoparticle penetration across the vessel wall. The second method uses ultrasound in combination with temperature-sensitive nanoparticles. In this approach, ultrasound is used to trigger the release of the encapsulated drug only within the tumor, thereby locally increasing the drug effectiveness.

"While these concepts have been around for some time, our mechanistic investigations not only explain and underscore the potential of combining focused ultrasound with different nanoparticle formulations to treat brain cancer but also lay the groundwork for more rational design and deeper understanding of focused ultrasound-based treatment," Arvanitis said. "Our results demonstrate that these therapeutic strategies can provide unique opportunities to improve the delivery of nanoparticles and their cargo in the brain and brain tumor microenvironment."

Arvanitis' presentation 1aBAb6, "Controlled drug delivery and release in brain tumors with focused ultrasound," will be at 11:30 a.m. PT, Monday, Dec. 2, in the Hanover room of the Hotel del Coronado in San Diego.
-end-
USEFUL LINKS

Main meeting website: http://acousticalsociety.org/asa-meetings/

Technical program: https://asa2019fall.abstractcentral.com/planner.jsp

Press Room: http://acoustics.org/world-wide-press-room/

WORLDWIDE PRESS ROOM

In the coming weeks, ASA's Worldwide Press Room will be updated with additional tips on dozens of newsworthy stories and with lay language papers, which are 300-500 word summaries of presentations written by scientists for a general audience and accompanied by photos, audio and video. You can visit the site during the meeting at http://acoustics.org/world-wide-press-room/.

PRESS REGISTRATION

We will grant free registration to credentialed journalists and professional freelance journalists. If you are a reporter and would like to attend, contact the AIP Media Line at 301-209-3090. For urgent requests, staff at media@aip.org can also help with setting up interviews and obtaining images, sound clips or background information.

LIVE MEDIA WEBCAST

Press briefings will be webcast live from the conference Tuesday, Dec. 3, in Hospitality Suite 3103 of the Hotel del Coronado in San Diego. Register at https://webcast.aipwebcasting.com/go/asa-dec3-19 to watch the live webcast. The schedule will be posted at the same site as soon as it is available.

ABOUT THE ACOUSTICAL SOCIETY OF AMERICA

The Acoustical Society of America (ASA) is the premier international scientific society in acoustics devoted to the science and technology of sound. Its 7,000 members worldwide represent a broad spectrum of the study of acoustics. ASA publications include The Journal of the Acoustical Society of America (the world's leading journal on acoustics), Acoustics Today magazine, books, and standards on acoustics. The society also holds two major scientific meetings each year. For more information about ASA, visit our website at http://www.acousticalsociety.org.

Acoustical Society of America

Related Nanoparticles Articles:

Cutting nanoparticles down to size -- new study
A new technique in chemistry could pave the way for producing uniform nanoparticles for use in drug delivery systems.
Study models new method to accelerate nanoparticles
In a new study, researchers at the University of Illinois and the Missouri University of Science and Technology modeled a method to manipulate nanoparticles as an alternative mode of propulsion for tiny spacecraft that require very small levels of thrust.
Actively swimming gold nanoparticles
Bacteria can actively move towards a nutrient source -- a phenomenon known as chemotaxis -- and they can move collectively in a process known as swarming.
Nanoparticles take a fantastic, magnetic voyage
MIT engineers have designed tiny robots that can help drug-delivery nanoparticles push their way out of the bloodstream and into a tumor or another disease site.
Quantum optical cooling of nanoparticles
One important requirement to see quantum effects is to remove all thermal energy from the particle motion, i.e. to cool it as close as possible to absolute zero temperature.
Nanoparticles help realize 'spintronic' devices
For the first time researchers have demonstrated a new way to perform functions essential to future computation three orders of magnitude faster than current commercial devices.
Directed evolution builds nanoparticles
Directed evolution is a powerful technique for engineering proteins. EPFL scientists now show that it can also be used to engineer synthetic nanoparticles as optical biosensors, which are used widely in biology, drug development, and even medical diagnostics such as real-time monitoring of glucose.
What happens to magnetic nanoparticles once in cells?
Although magnetic nanoparticles are being used more and more in cell imaging and tissue bioengineering, what happens to them within stem cells in the long term remained undocumented.
Watching nanoparticles
Stanford researchers retooled an electron microscope to work with visible light and gas flow, making it possible to watch a photochemical reaction as it swept across a nanoparticle the size of a single cold virus.
Nanoparticles to treat snakebites
Venomous snakebites affect 2.5 million people, and annually cause more than 100,000 deaths and leave 400,000 individuals with permanent physical and psychological trauma each year.
More Nanoparticles News and Nanoparticles Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab