Nav: Home

Oat pathogen defence discovery marks an important milestone

December 02, 2019

Researchers have identified the critical last pieces of a genetic defence system that gives oats resistance to soil pathogens.

The discovery opens significant opportunities for scientists and breeders to introduce versions of this defence mechanism into other crops.

It is an important milestone in research into avenacins, defensive antimicrobial compounds produced in the roots of oats. These were first identified more than 70 years ago and belong to the triterpene glycoside family of natural products which have diverse industrial and agricultural applications.

Avenacins give oats resistance against soil pathogens including Take-all, a notorious disease that causes major losses in wheat and barley.

Professor Anne Osbourn of the John Innes Centre and an author of the study said: "When we started 20 years ago we didn't have any of the genetic pieces in this avenacin defence pathway. Now we have found the last critical steps we have the potential to engineer it into other crops.

"Wheat, other cereals and grasses are not good at making antimicrobial compounds. Oat, on the other hand, is a prime example of a super-fit plant that has not been extensively bred and has disease resistance which could benefit more cultivated crops."

Many plant natural products such as avenacin have sugars attached to them, a process called glycosylation. This is important for the biological activity of natural products, in this case the antifungal activity of avenacin.

In this study, which appears in the journal PNAS, researchers used a range of genomic analysis techniques to identify the enzymes that catalyse this process.

They discovered the final component in this sugar chain was added by an unexpected class of enzyme. Furthermore, the sugar was added in the cell vacuole not the cytosol where most glycosylation steps occur in the avenacin pathway.

"This transglucosidase enzyme elucidated in this study belongs to a large family of enzymes not generally thought of as providing this function," explains first author Dr Anastasia Orme.

"Understanding the contribution of this family opens up a whole new sphere of carbohydrate biology that is relevant to natural products and hence to drugs and other valuable compounds."

The study was carried out in collaboration with Professor Bin Han as part of the Centre of Excellence for Plant and Microbial Science (CEPAMS) a partnership between the Chinese Academy of Sciences and the John Innes Centre.

One of the potential benefits of greater understanding this large family may be in biosynthesis of traditional Chinese medicine using resources such as the plant transient expression system technology developed by the John Innes Centre.
-end-
The study: A non-canonical vacuolar sugar transferase required for biosynthesis of antimicrobial defence compounds in oat, appears in the journal PNAS.

John Innes Centre

Related Natural Products Articles:

Even natural products can be harmful for the unborn child
Plant products ingested by pregnant women through their diet are broken down by the intestinal microbiota into chemical substances, some of which can cross the placental barrier and reach the fetus.
Determining the atomic structure of natural products more rapidly and accurately
Many drugs are derived from natural products. But before natural products can be exploited, chemists must first determine their structure and stereochemistry.
A new strategy for the synthesis of complex natural products
Chemists from the University of Basel have succeeded in synthesizing two complex natural products from the group of dithiodiketopiperazines (DTPs).
Fighting drug resistance with fast, artificial enhancement of natural products
Japanese researchers have identified multiple promising new drug candidates to treat antibiotic-resistant infections, including superbugs.
Hydrogen-natural gas hydrates harvested by natural gas
A recent study has suggested a new strategy for stably storing hydrogen, using natural gas as a stabilizer.
An unnatural way to make natural products
Researchers have developed an innovative new process for synthesizing isoprenoids, which are chemical compounds used in countless pharmaceutical and consumer products.
En route to custom-designed natural products
Microorganisms often assemble natural products similar to industrial assembly lines.
LC-MS/MS Identification and characterization of biodegradation products of Nitroproston
Nitroproston biodegradants were identified in vitro using LC-HRMS/MS. Amounts of Nitroproston and its biodegradation products in rat, rabbit and human plasma and human whole blood samples were measured by the target LC-MS/MS method.
Squaring the circle: Merchandising embarrassing products
Packaging shapes and colors of embarrassing products, as well as where the products are placed in stores, make a difference in how likely shoppers are to follow through on purchase intentions
A sweeter way to make green products
University of Delaware researchers have invented a more efficient process for extracting the sugars from wood chips, corn cobs and other organic waste from forests and farms.
More Natural Products News and Natural Products Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.