Nav: Home

Most complete commercial sugarcane genome sequence has been assembled

December 02, 2019

An international group of researchers led by Brazilian scientists has assembled the most complete genome sequence of commercial sugarcane. They mapped 373,869 genes or 99.1% of the total genome.

This feat is the result of almost 20 years of research supported by São Paulo Research Foundation - FAPESP and will serve as a basis for the genetic improvement of the world's largest crop in tonnage according to the UN Food & Agriculture Organization (FAO).

An article describing the study is published in GigaScience. Its lead authors are (Glaucia Mendes Souza, a full professor at the University of São Paulo's Chemistry Institute (IQ-USP) and a member of the steering committee for the FAPESP Bioenergy Research Program (BIOEN- FAPESP), and Marie-Anne Van Sluys, a full professor at the same university's Bioscience Institute (IB-USP) and a member of FAPESP's Life Sciences Adjunct Panel.

"It's the first time all the genes of the sugarcane plant, or the vast majority, have been seen. In previous projects by various research groups, the sequences had to be collapsed for lack of a proper assembly tool, so they were only an approximation," said Souza, who is the principal investigator for the Thematic Project "Signaling and regulatory networks associated with 'energy sugarcane'.

"This knowledge opens up many possibilities, from applications in biotechnology to genetic improvement and gene editing [substitution or elimination of genes with specific functions]," said Van Sluys, principal investigator for the Thematic Project "Contribution of genes, genomes and transposable elements to plant-microbe interaction: a sugarcane study case".

Challenges

As the researchers explained, today's commercial sugarcane hybrids have been bred over thousands of years by crossing different varieties of two species (Saccharum officinarum and S. spontaneum) and have a highly complex genome comprising 10 billion base pairs in 100-130 chromosomes. Sequencing the genome is no easy task, requiring substantial computing power to assemble the DNA fragments while keeping homologous chromosomes separate.

For comparison, the wheat genome contains 17 billion base pairs but only 46 chromosomes, while the human genome has a mere 3.2 billion base pairs, also organized into 46 chromosomes.

Although the technology available at the start of the project was capable of producing long sequences, these long sequences had to be built from smaller fragments. Assembling the genome with these sequences required significant computing power, which was supplied by Microsoft.

The idea for the whole-genome sequencing of sugarcane dates to the onset of the BIOEN Program in 2008. A presentation by Souza at a conference held by Microsoft and FAPESP in 2014 left David Hackerman, a researcher at Microsoft Research Institute in Los Angeles, fascinated with the computational challenges posed by the initiative. He proposed a collaboration with FAPESP, which took the form of the project "Development of an algorithm for the assembly of the sugarcane polyploid genome", with Souza as the principal investigator funded by FAPESP's program Research Partnership for Technological Innovation (PITE). The project was a collaboration with other partners, such as Bob Davidson, then a researcher with Microsoft at its Seattle unit and now with Amazon.

The sequence published has made it possible for the first time to identify the diversity in genome segments called gene promoters - DNA regions that control gene expression.

"Although in some cases the genes are 99.9% identical, we can detect differences in their promoters, and these help us determine which ancestor the copies derive from, S. officinarum or S. spontaneum," Souza said. The achievement permits studies, for example, of how different copies contribute to increased sugar and fiber yields and which copies may be advantageous to the different genotypes selected by programs to breed sugarcane varieties for sugar and for energy.

"The result confirms Brazil's and São Paulo state's leadership in research on sugarcane which is such an important plant for our country. It also reflects foresight on the part of the São Paulo research community and of FAPESP, regarding the challenge of learning about the sugarcane genome to extract knowledge leading to increased efficiency and productivity. We should always recall that research on sugarcane is one of the factors that enabled Brazil to achieve something no other country of a similar size has achieved to date, namely, producing 40% of its total energy from renewables and with low carbon emissions," said Carlos Henrique de Brito Cruz, FAPESP's Scientific Director.

Background

The variety chosen for sequencing was SP80-3280 because more data are available about this variety in scientific literature than about any other variety. During Project Sugarcane Genome (known as FAPESP SucEST, 1999-2002), 238,000 functional gene fragments from this variety were partially sequenced (read more at: https://revistapesquisa.fapesp.br/en/2012/08/22/mapping-sugarcanes/).

Today, SP80-3280 ranks among the top 20 sugarcane varieties grown in São Paulo state. It is also part of the genealogy of several commercial varieties, since it is used in new crossings. Its agricultural yield is high, and it is easily regrown by the sett method (setts are stem cuttings taken from old plants containing one or more buds), thus making it an option for late harvesting at the end of the crop year in São Paulo state.

"The knowledge obtained for this variety can be applied in studies of other genotypes, particularly for the discovery of genes that control biomass accumulation," explained Augusto Lima Diniz, a coauthor of the study and currently on a research internship abroad at Cold Spring Harbor Laboratory (CSHL) in the United States as part of his postdoctoral research for IQ-USP.

Souza and Van Sluys recently participated in an international team that sequenced the genome of S. spontaneum, the ancestor species corresponding to 10-15% of the commercial sugarcane genome. S. officinarum contributes 80-85%, and 5% is recombinant chromosomes of these two progenitor species. The study is published in Nature Genetics.

In 2018, Van Sluys was one of the authors of an article on the results of a study that mapped about half of the sugarcane monoploid genome (only one chromosome in each pair).

Based on the information obtained from this latest whole-genome sequencing effort, researchers at the University of São Paulo (USP) are developing tools for the genetic improvement of sugarcane and testing several candidate genes in Genetically Modified (GM) plants. They are also conducting comparative genomics studies on large gene families with the aim of understanding their contributions to the sugarcane varieties used in Brazilian genetic improvement programs. They hope to find genes that can increase yields, enhance drought resistance and contribute to the development of novel compounds from sugarcane.

"We're also offering the community a Genome Browser that can be used to search for specific genes and analyze sequences in comparison with previous sequencing exercises. This will be valuable to biotech projects not just relating to sugarcane but also to other crops and plants," Souza said.
-end-
About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at http://www.fapesp.br/en and visit FAPESP news agency at http://www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.

Fundação de Amparo à Pesquisa do Estado de São Paulo

Related Genome Articles:

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.
Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.
A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.
How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.
Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.
Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.
Why do we need one pair of genome?
Scientists have unraveled how the cell replication process destabilizes when it has more, or less, than a pair of chromosome sets, each of which is called a genome -- a major step toward understanding chromosome instability in cancer cells.
A new genome for regeneration research
The first complete genome assembly of planarian flatworm reveals a treasure trove on the function and evolution of genes.
Decoding the Axolotl genome
The sequencing of the largest genome to date lays the foundation for novel insights into tissue regeneration.
The Down's syndrome 'super genome'
Only 20 percent of foetuses with trisomy 21 reach full term.
More Genome News and Genome Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

An Announcement from Radiolab