AI abdominal fat measure predicts heart attack and stroke

December 02, 2020

OAK BROOK, Ill. - Automated deep learning analysis of abdominal CT images produces a more precise measurement of body composition and predicts major cardiovascular events, such as heart attack and stroke, better than overall weight or body mass index (BMI), according to a study presented today at the annual meeting of the Radiological Society of North America (RSNA).

"Established cardiovascular risk models rely on factors like weight and BMI that are crude surrogates of body composition," said Kirti Magudia, M.D., Ph.D., an abdominal imaging and ultrasound fellow at the University of California San Francisco. "It's well established that people with the same BMI can have markedly different proportions of muscle and fat. These differences are important for a variety of health outcomes."

Unlike BMI, which is based on height and weight, a single axial CT slice of the abdomen visualizes the volume of subcutaneous fat area, visceral fat area and skeletal muscle area. However, manually measuring these individual areas is time intensive and costly.

As a radiology resident at Brigham and Women's Hospital in Boston, Dr. Magudia was part of a multidisciplinary team of researchers, including radiologists, a data scientist and biostatistician, who developed a fully automated method using deep learning--a type of artificial intelligence (AI)--to determine body composition metrics from abdominal CT images.

"Abdominal CT scans that are routinely performed provide a more granular way of looking at body composition, but we're not currently taking advantage of it," Dr. Magudia said.

The study cohort was derived from the 33,182 abdominal CT outpatient exams performed on 23,136 patients at Partners Healthcare in Boston in 2012. The researchers identified 12,128 patients who were free of major cardiovascular and cancer diagnoses at the time of imaging. Mean age of the patients was 52 years, and 57% of patients were women.

The researchers selected the L3 CT slice (from the third lumbar spine vertebra) and calculated body composition areas for each patient. Patients were then divided into four quartiles based on the normalized values of subcutaneous fat area, visceral fat area and skeletal muscle area.

In this retrospective study, it was determined which of these 12,128 patients had a myocardial infarction (heart attack) or stroke within 5 years after their index abdominal CT scan. The researchers found 1,560 myocardial infarctions and 938 strokes occurred in this study group.

Statistical analysis demonstrated that visceral fat area was independently associated with future heart attack and stroke. BMI was not associated with heart attack or stroke.

"The group of patients with the highest proportion of visceral fat area were more likely to have a heart attack, even when adjusted for known cardiovascular risk factors," said Dr. Magudia. "The group of patients with the lowest amount of visceral fat area were protected against stroke in the years following the abdominal CT exam."

"These results demonstrate that precise measures of body muscle and fat compartments achieved through CT outperform traditional biomarkers for predicting risk for cardiovascular outcomes," she added.

According to Dr. Magudia, this work demonstrates that fully automated and normalized body composition analysis could now be applied to large-scale research projects.

"This work shows the promise of AI systems to add value to clinical care by extracting new information from existing imaging data," Dr. Magudia said. "The deployment of AI systems would allow radiologists, cardiologists and primary care doctors to provide better care to patients at minimal incremental cost to the health care system."

This paper is the recipient of an RSNA 2020 Trainee Research Prize.

Co-authors are Christopher P. Bridge, D.Phil., Camden P. Bay, Ph.D., Florian J. Fintelmann, M.D., Ana Babic, Ph.D., Katherine P. Andriole, Ph.D., Brian M. Wolpin, M.D., and Michael H. Rosenthal, M.D., Ph.D.
-end-
For more information and images, visit
RSNA is an association of radiologists, radiation oncologists, medical physicists and related scientists promoting excellence in patient care and health care delivery through education, research and technologic innovation. The Society is based in Oak Brook, Illinois. (RSNA.org)

Editor's note: The data in these releases may differ from those in the published abstract and those actually presented at the meeting, as researchers continue to update their data right up until the meeting. To ensure you are using the most up-to-date information, please call the RSNA media relations team at Newsroom at 1-630-590-7762.

For patient-friendly information on abdominal CT, visit

Radiological Society of North America

Related Heart Attack Articles from Brightsurf:

Top Science Tip Sheet on heart failure, heart muscle cells, heart attack and atrial fibrillation results
Newly discovered pathway may have potential for treating heart failure - New research model helps predict heart muscle cells' impact on heart function after injury - New mass spectrometry approach generates libraries of glycans in human heart tissue - Understanding heart damage after heart attack and treatment may provide clues for prevention - Understanding atrial fibrillation's effects on heart cells may help find treatments - New research may lead to therapy for heart failure caused by ICI cancer medication

Molecular imaging identifies link between heart and kidney inflammation after heart attack
Whole body positron emission tomography (PET) has, for the first time, illustrated the existence of inter-organ communication between the heart and kidneys via the immune system following acute myocardial infarction.

Muscle protein abundant in the heart plays key role in blood clotting during heart attack
A prevalent heart protein known as cardiac myosin, which is released into the body when a person suffers a heart attack, can cause blood to thicken or clot--worsening damage to heart tissue, a new study shows.

New target identified for repairing the heart after heart attack
An immune cell is shown for the first time to be involved in creating the scar that repairs the heart after damage.

Heart cells respond to heart attack and increase the chance of survival
The heart of humans and mice does not completely recover after a heart attack.

A simple method to improve heart-attack repair using stem cell-derived heart muscle cells
The heart cannot regenerate muscle after a heart attack, and this can lead to lethal heart failure.

Mount Sinai discovers placental stem cells that can regenerate heart after heart attack
Study identifies new stem cell type that can significantly improve cardiac function.

Fixing a broken heart: Exploring new ways to heal damage after a heart attack
The days immediately following a heart attack are critical for survivors' longevity and long-term healing of tissue.

Heart patch could limit muscle damage in heart attack aftermath
Guided by computer simulations, an international team of researchers has developed an adhesive patch that can provide support for damaged heart tissue, potentially reducing the stretching of heart muscle that's common after a heart attack.

How the heart sends an SOS signal to bone marrow cells after a heart attack
Exosomes are key to the SOS signal that the heart muscle sends out after a heart attack.

Read More: Heart Attack News and Heart Attack Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.