New Treatments Options, Research For Parkinson's Disease

December 02, 1998

HIGHLIGHTS:
A new type of brain surgery, Stereotactic-guided placement of a deep brain stimulator, done while the patient is awake, is helping to control tremors in Parkinson's Disease patients at Cedars-Sinai Medical Center's Neurofunctional Surgery Center, and new research may ultimately offer hope of a cure. Michel Levesque, M.D., is an internationally recognized neurosurgeon and neuroscientist and is available to discuss the latest in research and treatment options.

PATIENT:
For William (Bill) Hicks, then just 48 years old, learning that he had Parkinson's Disease in 1989 was devastating. An automobile racing enthusiast, he worked for a company that designed on-board computers for race cars, and enjoyed assisting his son, a race car driver. After trying various treatment options and medications for 9 years, Hicks underwent a Deep Brain Stimulator implant on October 23, 1998. Since then, the tremors on the left side of his body are 98 percent gone, he says. He plans to be back on the race track with his son this February when the racing season opens in Ventura.

AVAILABLE FOR INTERVIEWS:
Michel F. Levesque, M.D., Director of the Neurofunctional Surgery Center at Cedars-Sinai Medical Center; Neurophysiologists who developed the Internal Brain EEG; and patient

LOS ANGELES (December 2, 1998) - A new type of brain surgery at Cedars-Sinai Medical Center's Neurofunctional Surgery Center, done while the patient is awake, is helping to control tremors in Parkinson's Disease patients like William (Bill) Hicks, a race car enthusiast from Torrance, CA. While Stereotactic-Guided Placement of a Deep Brain Stimulator has been available in Europe for several years, it only received FDA approval last year for use in the United States. In addition to implanting a deep brain stimulator during the Oct. 23, 1998, surgery, physicians harvested some of Hicks's brain cells, which will be genetically engineered and implanted at a future date. Researchers hope that the genetically engineered cells will replace defective cells, thereby offering the possibility of a cure for this disease which presently has none.

According to Michel F. Levesque, M.D., Director of Cedars-Sinai's Neurofunctional Surgery Center, the state-of-the-art procedure utilizes magnetic resonance imaging (MRI) and a stereotactic frame to identify the exact location in the mid-brain that is causing tremors. The frame is placed on the patient's head like a crown. Coordinates are calculated digitally through a computer, showing the neurosurgeon precisely where to insert a battery-powered electrode (stimulator) that will send impulses to the thalamus -- the part of the brain that activates the tremors associated with Parkinson's Disease.

Once the target area has been identified, a 14mm hole -- about the size of a 50-cent coin -- is drilled in the crown of the patient's head, and an external voltage stimulator (test electrode) is carefully threaded between the two hemispheres of the brain to the thalamus. This electrode enables neurosurgeons to do extensive stimulation testing during surgery to determine precisely where within the thalamus to position the stimulator. The testing must be done while the patient is awake so that he or she can move his hands, fingers or arms when asked to do so, or respond verbally to questions asked by the surgical team. "As we move the test electrode, we watch the patient closely to identify exactly when the tremor has completely stopped. Then we know to exactly where to place the stimulator," says Dr. Levesque. Although awake, the patient does not experience pain during this testing, only tingling sensations.

To 'double-check' the location, Dr. Levesque also does a Micro Recording or Internal Brain EEG. Working with two neurophysiologists who designed the Micro Recording Electrodes, he takes this extra measure to be absolutely certain that he has located the nucleus of the thalamus. Once the team is satisfied that the location is exact, the patient is given a general anesthesia, and surgeons tunnel down from the top of the head to just below the clavicle in order to insert a tiny generator - the size of a business card - in the patient's chest. This generator is battery-powered and is turned on and off by the patient with a magnetic device. "Many patients do not experience tremors during sleep, so they like to turn off the generator when they go to bed and conserve the battery," says Dr. Levesque. Batteries usually have to be replaced after 10 years, but can last longer if they are not operated continuously.

The entire procedure usually takes about three to four hours. After surgery, the patient typically spends one night in the Cedars-Sinai Intensive Care Unit for observation, has a CT scan the next morning, and then goes home in a day or two. A check-up five days after surgery is followed by a two-week check-up, at which time the generator is turned on using the magnet. While many physicians turn on the generator at the time of surgery, Dr. Levesque prefers to wait about two weeks to give the patient time to recover from the surgery and for any swelling to diminish.

At this two-week check-up, Dr. Levesque also programs the generator using a special computer in his office. "The computer programs the stimulation levels," says Dr. Levesque. "Different people require varying levels of stimulation. Also, because Parkinson's Disease is a progressive disorder, additional programming will likely be needed to adjust the stimulation levels."
-end-
For media information and to arrange an interview, please call 1-800-396-1002. Kindly note that this number is exclusively for reporters' use -- please do not publish it in your story.



Cedars-Sinai Medical Center

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.