Researchers distinguish new type of leukemia

December 03, 2001

Researchers who have studied the activity of thousands of genes in a drug-resistant form of childhood leukemia are now proposing that the disease be called mixed-lineage leukemia (MLL) because it is a distinct disease, and not a subtype of the more prevalent acute lymphoblastic leukemia (ALL).

The research team, which was led by Howard Hughes Medical Institute investigator Stanley J. Korsmeyer and colleague Todd Golub, both at the Dana-Farber Cancer Institute at Harvard Medical School, published its findings in the December 3, 2001, issue of Nature Genetics.

According to Korsmeyer, researchers had known that infants with a form of ALL characterized by a specific chromosome break and rearrangement on chromosome 11, called a translocation, suffered severe relapses after chemotherapy. Researchers had discovered that the translocation involved a gene that they called the mixed lineage leukemia gene, or MLL.

Korsmeyer, Golub and their colleagues theorized that the MLL translocation might cause aberrations in metabolic pathways that would indicate that the drug-resistant form of leukemia they were studying was genetically different from ALL, and thus a distinct form of leukemia. They decided to use DNA microarrays to test their hypothesis by comparing the expression of genes in the lymphocytes of children with classic ALL versus lymphocytes from children with the chromosome 11 translocation.

DNA microarrays, popularly known as gene chips, are large collections of genes that are arrayed on a postage-stamp-sized chip. To study gene activity in cells, researchers extract collections of RNA from cells and apply those collections to the microarray. By measuring the level of fluorescence of markers attached to the RNA, the researchers are able to determine the level of gene activity, or expression, of each gene.

In their studies, the scientists compared the gene expression profiles of MLL and ALL cells using a commercial DNA microarray containing more than 12,000 genes. They discovered that about 1,000 genes were under-expressed in MLL compared to ALL, and about 200 genes were expressed at higher levels.

The researchers concluded that the gene expression profiles "show that ALLs possessing a rearranged MLL have a highly uniform and distinct pattern that clearly distinguishes them from conventional ALL or acute myelogenous leukemia and warrant designation as the distinct leukemia MLL."

The researchers also found clues about the origin of MLL from the identity of genes that were underexpressed or highly expressed. The underexpressed genes included many important for early development of blood cells. And the overexpressed genes included members of a family known as HOX genes, some of which are regulated by the MLL gene.

"When we look at these patterns of gene expression and also at the cells of origin of MLL, we see a pattern indicating that they are very early lymphoid progenitor cells," said Korsmeyer. "This suggests that MLL is caused by arrested maturation of lymphocytes. Once we saw that these cells were nothing like those in ALL, we understood why these children don't respond well at all to standard chemotherapy for ALL," he said.

When the scientists compared the genes whose expression is most characteristic of ALL, MLL and AML, they found patterns distinctive enough to be used to distinguish the three leukemias.

According to Korsmeyer, this study appears to represent the first time that a whole-genome profile has revealed that a chromosome translocation can switch on a specific gene expression program.

"A central question with respect to these chromosomal translocations is whether they represent simply an oncogenic cancer 'hit' that will be followed by additional mutations which dictate whether the cancer becomes a conventional ALL or immature infant leukemia," he said. "Or, is this translocation really the first dictating event, from which the rest of the leukemic process flows? Our results support the latter mechanism.

"These findings suggest that as we explore more of these cancers, we will discover meaningful prognostic subsets based on gene expression profiles," said Korsmeyer.

The studies also uncovered promising drug targets that may improve treatment of MLL, said Korsmeyer. Specifically, he cited as an example a gene called FLT3, whose increased activity most clearly distinguished MLL from ALL or AML. The FLT3 gene encodes an enzyme that is a cellular switch called a tyrosine kinase, a type of enzyme that is already targeted by drugs that are in development. The serendipitous discovery of the distinctive expression of FLT3 activity and of the other MLL-related genes emphasizes the value of large-scale gene expression profiling, said Korsmeyer.

"The beauty of the gene chip is that, much to our surprise, we could deal from the genomic equivalent of a whole deck of cards and come up with such a distinctive hand," he said. "We couldn't have imagined that amidst this vast amount of data, we could not only clearly distinguish MLL, but come up with FLT3 as a testable drug target for treating the disease."
-end-


Howard Hughes Medical Institute

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.