Climate change will affect carbon sequestration in oceans, scientists say

December 03, 2002

CHAMPAIGN, Ill. -- The direct injection of unwanted carbon dioxide deep into the ocean is one suggested strategy to help control rising atmospheric carbon dioxide levels and mitigate the effects of global warming. But, like the problems associated with the long-term storage of nuclear waste, finding a safe place to sequester the carbon may be more difficult than scientists first anticipated.

Because the atmosphere interacts with the oceans, the net uptake of carbon dioxide and the oceans' sequestration capacity would be affected by a change in climate. Just how effective carbon sequestration would be, in light of projected climate change, has not been studied before. Indeed, estimating the impact of carbon injection is complicated because of a limited understanding of climate and oceanic carbon cycle feedback mechanisms.

"Through various feedback mechanisms, the ocean circulation could change and affect the retention time of carbon dioxide injected into the deep ocean, thereby indirectly altering oceanic carbon storage and atmospheric carbon dioxide concentration," said Atul Jain, a professor of atmospheric sciences at the University of Illinois at Urbana-Champaign. "Where you inject the carbon dioxide turns out to be a very important issue."

To investigate the possible effects of feedbacks between global climate change, the ocean carbon cycle and oceanic carbon sequestration, Jain and graduate student Long Cao developed an atmosphere-ocean, climate-carbon cycle model of intermediate complexity. The researchers then used the model to study the effectiveness of oceanic carbon sequestration by the direct injection of carbon dioxide at different locations and ocean depths.

Jain and Cao found that climate change has a big impact on the oceans' ability to store carbon dioxide. The effect was most pronounced in the Atlantic Ocean.

"When we ran the model without the climate feedback mechanisms, the Pacific Ocean held more carbon dioxide for a longer period of time," Cao said. "But when we added the feedback mechanisms, the retention time in the Atlantic Ocean proved far superior. Based on our initial results, injecting carbon dioxide into the Atlantic Ocean would be more effective than injecting it at the same depth in either the Pacific Ocean or the Indian Ocean."

Future climate change could affect both the uptake of carbon dioxide in the ocean basins and the ocean circulation patterns themselves, Jain said. "As sea-surface temperatures increase, the density of the water decreases and thus slows down the ocean thermohaline circulation, so the ocean's ability to absorb carbon dioxide also decreases. This leaves more carbon dioxide in the atmosphere, exacerbating the problem. At the same time, the reduced ocean circulation will decrease the ocean mixing, which decreases the ventilation to the atmosphere of carbon injected into the deep ocean. Our model results show that this effect is more dominating in the Atlantic Ocean."

Tucking away excess carbon dioxide in Davy Jones's locker is not a permanent solution for reducing the amount of carbon dioxide in the atmosphere. "Sequestering carbon in the deep ocean is, at best, a technique to buy time," Jain said.

"Carbon dioxide dumped in the oceans won't stay there forever. Eventually it will percolate to the surface and into the atmosphere."

To buy as much time as possible, the carbon dioxide must remain trapped for as long as possible. "The big question is in what region of which ocean will future climate change have the least effect," Jain said. "That's where we will want to store the carbon dioxide."
Jain and Cao will present their latest findings at the American Geophysical Union meeting in San Francisco, Dec. 6-10. The U.S. Department of Energy funded the work.

University of Illinois at Urbana-Champaign

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to