New first-aid method could prevent brain damage in patients exposed to carbon monoxide

December 03, 2002

A new first-aid method of treating carbon monoxide poisoning could prevent brain damage in patients by delivering more oxygen to the brain than the standard treatment, according to a study by physicians at the Toronto General Hospital, University Health Network (UHN).

The study is published in the December issue of the U.S. based and peer-reviewed journal Annals of Emergency Medicine. The researchers, led by Dr. Josh Rucker, a Toronto General Hospital research fellow and resident in the Anesthesiology training program at the University of Toronto, studied 14 subjects who were exposed to low levels of carbon monoxide (resulting in blood levels about equal to those in heavy smokers) on two occasions in order to simulate conditions during carbon monoxide poisoning.

After each exposure, which lasted one hour, the participants were given one of two "test treatments": the standard treatment of 100% oxygen, or the new method consisting of a mixture of mostly oxygen and some carbon dioxide. Each participant received both test treatments in random order. Researchers then monitored the amount of oxygen in the blood and the blood flow to the brain during exposure to carbon monoxide and during the test treatments.

KEY RESULTS"These results are intriguing," said Dr. Fisher, an anesthesiologist at Toronto General Hospital, University Health Network, Associate Professor in the Faculty of Medicine at the University of Toronto and a senior author of the study. "Most doctors believe that giving patients oxygen is like giving them chicken soup -- it can't hurt. But, in fact, we find that treating carbon monoxide-exposed participants with pure oxygen actually limits the amount of oxygen that gets to their brains. That is worrisome."

"If severely poisoned patients respond like our test subjects, this new first-aid treatment may decrease the extent of brain damage in survivors," added Dr. Joseph Fisher.

IMPLICATIONSCARBON MONOXIDE POISONING
-end-
The study was supported, in part, by the Department of Anesthesia, University Health Network and the University of Toronto, and the Tobi and Ted Bekhor Foundation.

The Toronto General Hospital is a partner in University Health Network, along with Toronto Western and Princess Margaret Hospitals. The scope of research and complexity of cases at Toronto General Hospital has made it a national and international source for discovery, education and patient care. It has one of the largest hospital-based research programs in Canada, with major research projects in cardiology, transplantation, surgical innovation, infectious diseases, and genomic medicine. Toronto General Hospital is a teaching hospital affiliated with the University of Toronto.

To schedule an interview with Dr. Josh Rucker or Dr. Joseph Fisher, please contact:

Alex Radkewycz
Public Affairs
Toronto General Hospital, University Health Network
Phone: 416-340-3895
Pager: 416-980-0752

University of Toronto

Related Blood Vessels Articles from Brightsurf:

Biofriendly protocells pump up blood vessels
In a new study published today in Nature Chemistry, Professor Stephen Mann and Dr Mei Li from Bristol's School of Chemistry, together with Associate Professor Jianbo Liu and colleagues at Hunan University and Central South University in China, prepared synthetic protocells coated in red blood cell fragments for use as nitric oxide generating bio-bots within blood vessels.

Specific and rapid expansion of blood vessels
Upon a heart infarct or stroke, rapid restoration of blood flow, and oxygen delivery to the hypo perfused regions is of eminent importance to prevent further damage to heart or brain.

Flexible and biodegradable electronic blood vessels
Researchers in China and Switzerland have developed electronic blood vessels that can be actively tuned to address subtle changes in the body after implantation.

Lumpy proteins stiffen blood vessels of the brain
Deposits of a protein called ''Medin'', which manifest in virtually all older adults, reduce the elasticity of blood vessels during aging and hence may be a risk factor for vascular dementia.

Cancer cells take over blood vessels to spread
In laboratory studies, Johns Hopkins Kimmel Cancer Center and Johns Hopkins University researchers observed a key step in how cancer cells may spread from a primary tumor to a distant site within the body, a process known as metastasis.

Novel function of platelets in tumor blood vessels found
Scientists at Uppsala University have discovered a hitherto unknown function of blood platelets in cancer.

Blood vessels can make you fat, and yet fit
IBS scientists have reported Angiopoietin-2 (Angpt2) as a key driver that inhibits the accumulation of potbellies by enabling the proper transport of fatty acid into general circulation in blood vessels, thus preventing insulin resistance.

Brothers in arms: The brain and its blood vessels
The brain and its surrounding blood vessels exist in a close relationship.

Feeling the pressure: How blood vessels sense their environment
Researchers from the University of Tsukuba discovered that Thbs1 is a key extracellular mediator of mechanotransduction upon mechanical stress.

Human textiles to repair blood vessels
As the leading cause of mortality worldwide, cardiovascular diseases claim over 17 million lives each year, according to World Health Organization estimates.

Read More: Blood Vessels News and Blood Vessels Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.