Budding viral hijackers may co-opt cell machinery for the getaway

December 03, 2003

When retroviruses like HIV infect cells, they take over the cell's machinery to manufacture new copies of themselves. Research published this week in the top-tier open access journal, Journal of Biology, shows that to escape from cells, retroviruses may once again hijack cellular components, in this case molecules normally used to engulf material from the cell's surroundings in a pocket formed from cell membrane. The findings, offer new insights into how viruses propagate and cause disease, and how healthy cells work.

Retroviruses travel from cell to cell in 'spacecraft' surrounded by the membrane of host cells. These transporters protect the virus from attack by the immune system, as they disguise the virus as part of the body. The outer membrane of the virus particle also helps the virus to spread, as it can fuse with the membrane of other vulnerable cells.

During the construction of a virus particle, or virion, the cell membrane bulges outwards, engulfing viral components as it goes. One of the viral proteins, called Gag, is essential for this process.

Now, researchers from Columbia and Yale Universities, USA, Aijou University, South Korea and the Chinese Academy of Sciences has shown that some retroviral Gag proteins bind tightly to a host-cell protein called endophilin-2. Endophilin-2 is normally involved in the inward budding of the cell membrane, a process known as endocytosis.

Supporting the idea that this interaction is functionally relevant, the researchers found endophilin-2 inside viral particles that had budded from cells infected with Moloney-murine leukaemia virus. On further examination, they also found two other proteins involved in endocytosis, a-adaptin and clathrin, inside the virions. However, Dynamin-2, a protein that binds to endophilin-2, was not there. This suggests that the incorporation of selected proteins is unlikely to be accidental.

Endophilin-2's normal role is to increase the curvature of the cell membrane during endocytosis. Further examination of how retroviruses use endophilin-2 will not only tell us more about the normal process of endocytosis, but should also increase our knowledge of how the viruses spread from cell to cell.

The research team led by Stephen Goff write: "Endophilin could be another component that is hijacked by retroviruses to promote virion production."
-end-
This release is based on the following article: Endophilins interact with Moloney murine leukemia virus Gag and modulate virion production Margaret Q Wang, Wankee Kim, Guangxia Gao, Ted A Torrey, Herbert C Morse III, Pietro De Camilli and Stephen P Goff Journal of Biology 2003, 3:4 (to be published 4 December 2003)

Upon publication, this article will be available without charge, according to Journal of Biology's open access policy at: http://jbiol.com/content/3/1/4.

For further information about this article, please contact Gemma Bradley by email at press@biomedcentral.com or by phone on 44-207-323-0323.

Journal of Biology (http://jbiol.com) is the open access journal for exceptional research. Published by BioMed Central, it provides free access to research articles of the broadest importance and interest. By providing immediate, permanent, unrestricted access to these articles, Journal of Biology ensures the widest possible dissemination of the research it publishes.

BioMed Central (http://www.biomedcentral.com) is an independent online publishing house committed to providing immediate free access to peer-reviewed biological and medical research. This commitment is based on the view that open access to research is essential to the rapid and efficient communication of science. In addition to open-access original research, BioMed Central also publishes subscription-based content.

BioMed Central

Related Protein Articles from Brightsurf:

The protein dress of a neuron
New method marks proteins and reveals the receptors in which neurons are dressed

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Diets high in protein, particularly plant protein, linked to lower risk of death
Diets high in protein, particularly plant protein, are associated with a lower risk of death from any cause, finds an analysis of the latest evidence published by The BMJ today.

A new understanding of protein movement
A team of UD engineers has uncovered the role of surface diffusion in protein transport, which could aid biopharmaceutical processing.

A new biotinylation enzyme for analyzing protein-protein interactions
Proteins play roles by interacting with various other proteins. Therefore, interaction analysis is an indispensable technique for studying the function of proteins.

Substituting the next-best protein
Children born with Duchenne muscular dystrophy have a mutation in the X-chromosome gene that would normally code for dystrophin, a protein that provides structural integrity to skeletal muscles.

A direct protein-to-protein binding couples cell survival to cell proliferation
The regulators of apoptosis watch over cell replication and the decision to enter the cell cycle.

A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.

Resurrecting ancient protein partners reveals origin of protein regulation
After reconstructing the ancient forms of two cellular proteins, scientists discovered the earliest known instance of a complex form of protein regulation.

Sensing protein wellbeing
The folding state of the proteins in live cells often reflect the cell's general health.

Read More: Protein News and Protein Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.