Origin of multiple myeloma found in rare stem cell

December 03, 2003

Johns Hopkins Kimmel Cancer Center scientists have identified the cell likely to be responsible for the development of multiple myeloma, a cancer of the bone marrow that destroys bone tissue. The research, published in Blood online, suggests that therapies designed for long-term cure of the disease should target this stem cell, which, unlike other cells, can copy itself and differentiate into one or more specialized cell types.

In their studies to learn why multiple myeloma so often recurs following drug treatment, the investigators uncovered a rare stem cell , occurring in just one out of every 10,000 cells or less than one percent of all myeloma cells.

Working with immune system B-cells, the Johns Hopkins team found that this stem cell gives rise to the malignant bone marrow plasma cells characterized by multiple myeloma.

Current treatments target the malignant plasma cells but may not be effective on the errant multiple myeloma stem cells, allowing the cancer to recur. "Most therapies today are aimed at the cancer you can see, but to cure cancer you have to go after the cells responsible for the disease, similar to how we kill a weed by getting at its roots, not just the part above the ground," explains Richard Jones, M.D., professor and director of bone marrow transplant at the Johns Hopkins Kimmel Cancer Center. "If you cut off the flower and stem of a dandelion, it may look like it has died for a period of time, but the weed eventually will grow back. If you get the root, however, the weed does not grow back."

The scientists found the rare stem cell by looking at markers on the surface of damaged B-cells, which develop into plasma cells that cannot divide and multiply. "We know what the markers are on cancerous plasma cells and the antibodies they make, and we also know the markers on B-cells that are not cancerous. So, we went looking for a B-cell that has the same antibodies, can make copies of itself and mature into cancerous plasma cells," says William Matsui, M.D., assistant professor of oncology at the Johns Hopkins Kimmel Cancer Center.

They found that this multiple myeloma stem cell looks and acts genetically different from the plasma cell.

"Because these two cells are biologically different, we may need two therapies - one to kill the plasma cells, or the visible part of the weed; and one to kill the root - the stem cells," says Matsui. "Treatments that are directed at myeloma plasma cells are likely to produce visible results, but they will be temporary improvements unless we also target the myeloma stem cell."

Therapies for myeloma undergoing study at the Johns Hopkins Kimmel Cancer Center include antibodies that target the stem cells and drugs to make them age prematurely. Cancer stem cells have been found as the culprit in chronic myeloid leukemia, and the scientists believe the same pattern of cancer development may apply to other cancers, including breast cancer, acute myeloid leukemia and acute lymphocytic leukemia.

Multiple myeloma is the second most common blood cancer and strikes more than 14,000 Americans each year. Close to 11,000 will die from the disease.
-end-
This research was funded by the National Cancer Institute.

Other participants in this research include Carol Ann Huff, Qiuju Wang, Matthew T. Malehorn, James Barber, Yvette Tanhehco, B. Douglas Smith, and Curt I. Civin from the Johns Hopkins Kimmel Cancer Center.

Johns Hopkins Medical Institutions' news releases are available on an EMBARGOED basis on EurekAlert at http://www.eurekalert.org and from the Office of Communications and Public Affairs' direct e-mail news release service. To enroll, call 410-955-4288 or send e-mail to bsimpkins@jhmi.edu.

On a POST-EMBARGOED basis find them at http://www.hopkinsmedicine.org

Johns Hopkins Medicine

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.