Gold and silver nano baubles

December 03, 2010

They might just be the smallest Christmas tree decorations ever. Tiny spherical particles of gold and silver that are more than 100 million times smaller than the gold and silver baubles used to decorate seasonal fir trees have been synthesized by researchers in Mexico and the US.

Writing in the December issue of the International Journal of Nanoparticles, materials engineer Xavier E. Guerrero-Dib, of the Universidad Autónoma de Nuevo León and colleagues there and at The University of Texas at Austin, describe the formation of gold, silver and alloyed, bimetallic nanoparticles just 25 nanometers in diameter. They used vitamin C, ascorbic acid, commonly found in tangerines, a favorite stocking filler in many parts of the world, and a soap-like, surfactant molecule known as cetyltrimethylammonium bromide, an antiseptic occasionally used in expensive cosmetics.

Reaction of silver nitrate and the gold compound chloroauric acid under these conditions led to successive reduction of the metals and the formation of different silver, gold and bimetallic nanoparticles. The precise structures of the nanoparticles were revealed using a high-resolution elemental mapping technique. The analysis shows the nanoparticles to have multiple layers, shells of gold within silver within gold, in the case of the bimetallic particles and some blending, or alloying, of the metals occurred.

Nanoparticles are of great interest to chemists and materials scientists for their potential as catalysts for speeding up chemical reactions, as novel drug-delivery agents, and as quantum dots for analytical applications. They may also be used in the fabrication of the components of future electronics devices beyond the silicon chip. Metal nanoparticles containing two or more different metals might have even more intriguing chemical, electronic and optical properties than single-metal nanoparticles because of the combination of the different chemistries of each metal as well as the size effects of the particles simply being, very, very small.

The researchers point out that the optical properties of nanoparticles depend very much on size and shape as well as the constituent metals. Gold and silver nanoparticles are particularly useful as their optical effects occur at visible wavelengths of light. The team adds that if it were possible to fine-tune the combination of gold and silver in the same nanoparticles then it might also be possible to tune the optical properties of such particles.
-end-
"Synthesis and optical properties of Au@Ag bimetallic nanoparticles" in Int. J. Nanoparticles, 2010, 3, 367-377

Inderscience Publishers

Related Nanoparticles Articles from Brightsurf:

An ionic forcefield for nanoparticles
Nanoparticles are promising drug delivery tools but they struggle to get past the immune system's first line of defense: proteins in the blood serum that tag potential invaders.

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

Read More: Nanoparticles News and Nanoparticles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.