New clue in leukemia mystery: Researchers identify 'poison' employed by deadly enzyme mutations

December 03, 2010

NEW YORK (Dec. 2, 2010) -- There is new hope for people with acute myelogenous leukemia (AML), a fast-growing cancer of the blood and bone marrow. Research led by Weill Cornell Medical College and published today in the online edition of the journal Cancer Cell reveals a surprising and unexpected cancer-causing mechanism. The investigators discovered that newly identified mutant enzymes in AML create a chemical poison to cause leukemia. Their findings should prove useful in treating patients by providing a molecular target against which to develop new drugs against one subset of AML as well as other cancers.

AML is one of the most common types of leukemia among adults, with an estimated 12,300 new cases diagnosed in the United States each year and 8,950 deaths, according to the American Cancer Society. People with AML have abnormal cells inside their bone marrow that quickly multiply, replacing healthy blood cells in the bone marrow and leading to infections, bleeding and severe anemia.

The large-scale, international, collaborative research effort scrutinized the genomes of 750 AML patients from the United States and Europe for chemical clues to better understand how leukemia arises from normal bone marrow cells. Using computational tools to sift through millions of data points, they discovered a unique chemical signature in the genomes of patients with mutations in either of two enzymes called IDH1 and IDH2, which occur frequently in AML.

Dr. Ari Melnick of Weill Cornell Medical College and his principal co-authors -- including Dr. Craig B. Thompson, president of Memorial Sloan-Kettering Cancer Center (MSKCC), and Dr. Ross L. Levine, also of MSKCC -- discovered this chemical signature: a massive accumulation of DNA methylation that causes genes to function abnormally, leading to AML. They went on to show that IDH1 and IDH2 mutations generate a "poison" that blocks the ability of a protective factor called TET2 to remove the methylation from the genome. Interestingly, the researchers also showed that many AML patients have mutations that inactivate TET2, and this causes the same abnormal DNA methylation effect as IDH1 and IDH2 mutations.

"One of the great surprises of this study was that IDH1 and IDH2, which are normally involved in energy metabolism and located far away from DNA and outside of the cell nucleus, could become subverted to make a substance that poisons the genome," says Dr. Ari Melnick, the study's senior author and associate professor of medicine and director of the Raymond and Beverly Sackler Center for Biomedical and Physical Sciences at Weill Cornell Medical College.

"Our study shows for the first time that metabolic enzymes not only help to fuel tumor growth but when mutated can also directly 'rewrite' the instructions that govern the genome," Dr. Melnick continues. One important implication of this work is that it appears technically feasible to create drugs that can specifically stop mutant IDH1 and IDH2 from making the cancer-causing poison. Such inhibitors have the potential to fundamentally restore normal functioning to the genome and thus help to treat leukemias. IDH1 is also frequently mutated in malignant brain tumors, suggesting that the current study has broad implications for several types of cancer.

"These discoveries were only possible thanks to the collaboration of a large team of scientists with expertise in different disciplines from around the world," emphasizes Dr. Melnick, "and thanks to an unusual alliance between multicenter clinical trials groups from Europe and the United States. This spirit of cooperation allowed for the collection and analysis of the massive genomic datasets required for these discoveries to be made. Working together, it will be possible to accelerate the pace of discovery and development of better treatments."
-end-
The study's co-first authors are Dr. Maria Figueroa from Weill Cornell Medical College and Dr. Omar Abdel-Wahab from Memorial Sloan-Kettering Cancer Center -- both of whom are instructors in the Melnick and Levine labs, respectively; and Chao Lu and Patrick S. Ward, graduate students with Dr. Thompson. Additional contributing authors to the paper include Yushan Li, Weill Cornell Medical College; Neha Bhagwat, Jay Patel, Alan Shih and Martin S. Tallman, Memorial Sloan-Kettering Cancer Center; Lucy A. Godley and Aparna Vasanthakumar, University of Chicago; Hugo F. Fernandez, Moffitt Cancer Center, Tampa, Fla.; Zhuoxin Sun, Harvard School of Public Health, Boston, Mass.; Kristy Wolniak and Jonathan D. Licht, Northwestern University, Chicago, Ill.; Justine K. Peeters, Bob Löwenberg, Ruud Delwel and Peter J.M. Valk, Erasmus University Medical Center, Rotterdam, Netherlands; Sung E. Choe, Valeria R. Fantin and Wei Liu, Agios Pharmaceuticals, Cambridge, Mass.; and Elisabeth Paietta, Montefiore Medical Center-North Division, Bronx, N.Y. The study was made possible by research support from the National Cancer Institute, the Leukemia and Lymphoma Society and the Starr Cancer Consortium.

The Raymond and Beverly Sackler Center for Biomedical and Physical Sciences

The Raymond and Beverly Sackler Center for Biomedical and Physical Sciences at Weill Cornell Medical College brings together a multidisciplinary team of scientists for the purpose of catalyzing major advances in medicine. By harnessing the combined power of experimental approaches rooted in the physical and biological sciences, Sackler Center investigators can best accelerate the pace of discovery and translate these findings for the benefit of patients with various medical conditions including but not limited to cancer.

Weill Cornell Medical College

Weill Cornell Medical College, Cornell University's medical school located in New York City, is committed to excellence in research, teaching, patient care and the advancement of the art and science of medicine, locally, nationally and globally. Physicians and scientists of Weill Cornell Medical College are engaged in cutting-edge research from bench to bedside, aimed at unlocking mysteries of the human body in health and sickness and toward developing new treatments and prevention strategies. In its commitment to global health and education, Weill Cornell has a strong presence in places such as Qatar, Tanzania, Haiti, Brazil, Austria and Turkey. Through the historic Weill Cornell Medical College in Qatar, the Medical College is the first in the U.S. to offer its M.D. degree overseas. Weill Cornell is the birthplace of many medical advances -- including the development of the Pap test for cervical cancer, the synthesis of penicillin, the first successful embryo-biopsy pregnancy and birth in the U.S., the first clinical trial of gene therapy for Parkinson's disease, and most recently, the world's first successful use of deep brain stimulation to treat a minimally conscious brain-injured patient. Weill Cornell Medical College is affiliated with NewYork-Presbyterian Hospital, where its faculty provides comprehensive patient care at NewYork-Presbyterian Hospital/Weill Cornell Medical Center. The Medical College is also affiliated with the Methodist Hospital in Houston, making Weill Cornell one of only two medical colleges in the country affiliated with two U.S.News & World Report Honor Roll hospitals. For more information, visit weill.cornell.edu.

NewYork-Presbyterian/Weill Cornell Medical Center

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.