Plant organ development breakthrough

December 03, 2012

Stanford, CA -- Plants grow upward from a tip of undifferentiated tissue called the shoot apical meristem. As the tip extends, stem cells at the center of the meristem divide and increase in numbers. But the cells on the periphery differentiate to form plant organs, such as leaves and flowers. In between these two layers, a group of boundary cells go into a quiescent state and form a barrier that not only separates stem cells from differentiating cells, but eventually forms the borders that separate the plant's organs.

Because each plant's form and shape is determined by organ formation and organ boundary creation, elucidating the underlying mechanisms that govern these functions could help scientists design the architecture of crop plants to better capture light and ultimately produce more crop yield with less input. New research from two teams led by Carnegie's Zhiyong Wang and Kathryn Barton focuses on the role of the crucial plant hormone brassinosteroid in the creation of plant-shoot architecture. Their work is published by Proceedings of the National Academy of Sciences during the week of December 3.

Like all organisms, plant growth and development is regulated by internally produced chemical signals, including hormones like brassinosteroid, which is found throughout the plant kingdom. The brassinosteroid signaling pathway is involved in regulating more than 1,000 plant genes. Mutant plants that are deficient in brassinosteroid that are grown in the dark show features of plants grown in the light. They also have defects at many phases of the plant life cycle, including reduced seed germination, dwarfism, and sterility.

The new study lead by Wang and Barton uncovered yet another role of brassinosteroid: the formation of boundaries between organs. Plants made hypersensitive to brassinosteroid displayed fused organs.

The team included lead author's Carnegie's Joshua Gendron and Jiang-Shu Liu, as well as Min Fan, Mingyi Bai, and Stephan Wenkel, from Carnegie, and Patricia Springer from the University of California Riverside.

Their investigations showed that activation of the brassinosteroid pathway represses a group of genes called the cup-shaped cotyledon, or CUC family, which is responsible for organ boundary formation. Using sophisticated techniques the team demonstrated that the protein in the brassinosteroid pathway that is responsible for binding to DNA and, in this case, for inhibiting CUC genes, is present at high levels in the meristem's undifferentiated stem cells and developing organ primordia, but very low in the boundary cells, suggesting that different levels of brassinosteroid activity contribute to the opposite growth behavior of these three types of cells.

"This work links the plant steroids to growth and development, organ boundary development, providing a link between the physiology of the plant and its architectural design," Wang and Barton said.
-end-
This research was supported by the National Institutes of Health.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Carnegie Institution for Science

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.