Clinical trial hits new target in war on breast cancer

December 03, 2012

Breast cancers are defined by their drivers - estrogen and progesterone receptors (ER and PR) and HER2 are the most common, and there are drugs targeting each. When breast cancer has an unknown driver, it also has fewer treatment options - this aggressive form of breast cancer without ER, PR or HER2, which was thought not to be driven by hormones, is known as triple negative. A decade ago, work at the University of Colorado Cancer Center added another potential driver to the list - the androgen receptor - and this week marks a major milestone in a clinical trial targeting this cause of breast cancer growth.

In fact, 75 percent of all breast cancers and about 20 percent of triple negative cancers are positive for the androgen receptor. Blocking the androgen receptor may stop the growth of some triple negative breast cancers - these aggressive cancers for which chemotherapy, radiation, surgery and hope have long been the only treatments.

"This work is a concise example of modern cancer science in action. We noticed something in the clinic, worked on it in the lab, and now are happy to report the lab work is once again back in the clinic where it has the very real potential to benefit patients," says Anthony Elias, MD, breast cancer program director at CU Cancer Center.

The work started in 2001 when Elias took the clinical observation of estrogen-positive breast cancers that responded poorly or only very temporarily to estrogen-blocking treatments, to colleague Jennifer Richer, PhD, co-director of the CU Cancer Center Tissue Processing and Procurement Core. In these cases, something else was driving the cancer. What was the pathway? Richer showed that it was the androgen receptor.

Androgens including testosterone have long been implicated as a driver of prostate cancer and so drugs targeting both the body's production of androgens and cancer cells' ability to use the hormone were already in the development pipeline. Richer started with cell culture and animal model work on a then-experimental drug by the company Medivation known as MDV-3100.

"Normally, the way these hormones work is by attaching to receptors in the cell cytoplasm, at which point the receptor draws itself and the hormone molecule inside the nucleus where it regulates genes," Richer says. The genes regulated by these hormones tell breast cancer cells to survive and reproduce beyond control. The drug MDV-3100, now known as Enzalutamide, which recently gained FDA approval for use with prostate cancer, makes androgen receptors unable to go into a cell's nucleus - and so the message of growth never gets delivered.

"Interestingly, it seems that estrogen-positive breast cancers are susceptible to the same drug," Richer says, explaining that something about the way the signal of estrogen is transmitted inside a cell's nucleus requires the (counterintuitive) presence of androgen receptors in the nucleus, too.

And so Enzalutamide has many potential uses in the treatment of breast cancer: as a first-line drug against androgen receptor-positive cancers with or without additional hormonal drivers, as a second-line drug against tumors that have mutated away from estrogen- or HER2-dependence by adopting androgen-dependence, in combination with drugs that target these other hormones to disallow cancer from mutating toward androgen-dependence in the first place, or perhaps in addition to or instead of existing treatments for estrogen-positive breast cancers - which seem susceptible to this anti-androgen therapy.

This week, after seeing, "no additional toxicities," Elias expects an ongoing Phase I clinical trial of Enzalutamide for triple-negative breast cancers to flip to a Phase II trial - from proving safety to demonstrating results. In addition to the CU Cancer Center, the trial is being offered at Memorial Sloan-Kettering Cancer Center and the Karmanos Cancer Institute. Richer and Elias will present additional findings from their work with androgen-positive breast cancer at the San Antonio Breast Cancer Symposium in December and will hear about a major invited grant proposal to the U.S. Department of Defense the same month.

"It's an exciting time for breast cancer research," Elias says. "We should know soon if we have a viable new target in breast cancer treatment."

Along with validating a new target, Richer and Elias may soon provide a powerful new treatment for breast cancers that evade current therapies.
-end-


University of Colorado Anschutz Medical Campus

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.