Mapping human disease: 'Not all pathogens are everywhere'

December 03, 2014

Researchers at North Carolina State University have for the first time mapped human disease-causing pathogens, dividing the world into a number of regions where similar diseases occur.

The findings show that the world can be separated into seven regions for vectored human diseases - diseases that are spread by pests, like mosquito-borne malaria - and five regions for non-vectored diseases, like cholera.

Interestingly, not all of the regions are contiguous. The British Isles and many of its former colonies, such as the United States and Australia, have similar diseases and are classified in the same vectored and non-vectored regions. But Britain's former colonies in Africa and Asia contain different diseases and therefore are located in differing regions, suggesting that colonization is just one of a variety of factors, like climate and socio-political status, affecting the prevalence of disease in a specific area.

"This is about more than just the movement of people - climate, history and geography all seem to be important factors in how diseases survive and thrive across the globe," said Michael Just, an NC State Ph.D. student in plant and microbial biology and lead author of a paper describing the research. "Understanding that not all pathogens are everywhere could have consequences for public health and the global society as a whole."

The researchers examined the world's 229 countries for the presence or absence of 301 diseases - 93 vectored and 208 non-vectored. It found two more vectored-disease regions than non-vectored disease regions, which is likely due to the fact that the vectors - the pests that carry disease - sometimes have limited mobility. Think of a warm-weather pest that can't handle the cold, like the mosquito.

"Researchers have mapped humans, animals and plants and their movement and evolution across the globe, but the things that live on or with us - pests and pathogens, for example - have been largely ignored," Just said. "This study is a good first step in examining the relationship between people and their pathogens, which could have important human health implications."
-end-
-Kulikowski

Note: An abstract of the paper follows.

"Global biogeographic regions in a human-dominated world: the case of human diseases"

Authors: Michael Just, Jacob Norton, Amanda Traud, Tim Antonelli, Aaron Poteate, Gregory Backus, Andrew Snyder-Beattie, R. Wyatt Sanders and Rob Dunn, NC State University

Published: Nov. 21, 2014, in Ecosphere

DOI: 10.1890/ES14-00201.1

Abstract: Since the work of Alfred Russel Wallace, biologists have sought to divide the world into biogeographic regions that reflect the history of continents and evolution. These divisions not only guide conservation efforts, but are also the fundamental reference point for understanding the distribution of life. However, the biogeography of human-associated species--such as pathogens, crops, or even house guests--has been largely ignored or discounted. As pathogens have the potential for direct consequences on the lives of humans, domestic animals, and wildlife it is prudent to examine their potential biogeographic history. Furthermore, if distinct regions exist for human-associated pathogens, it would provide possible connections between human wellbeing and pathogen distributions, and, more generally, humans and the deep evolutionary history of the natural world. We tested for the presence of biogeographic regions for diseases of humans due to pathogens using country-level disease composition data and compared the regions for vectored and non-vectored diseases. We found discrete biogeographic regions for diseases, with a stronger influence of biogeography on vectored than non-vectored diseases. We also found significant correlations between these biogeographic regions and environmental or socio- political factors. While some biogeographic regions reflected those already documented for birds or mammals, others reflected colonial history. From the perspective of diseases caused by pathogens, humans have altered but not evaded the influence of ancient biogeography. This work is the necessary first step in examining the biogeographic relationship between humans and their associates.

North Carolina State University

Related Pathogens Articles from Brightsurf:

Pathogens in the mouth induce oral cancer
Pathogens found in tissues that surround the teeth contribute to a highly aggressive type of oral cancer, according to a study published 1st October in the open-access journal PLOS Pathogens by Yvonne Kapila of the University of California, San Francisco, and colleagues.

A titanate nanowire mask that can eliminate pathogens
Researchers in Lásló Forró's lab at EPFL, Switzerland, are working on a membrane made of titanium oxide nanowires, similar in appearance to filter paper but with antibacterial and antiviral properties.

Plastics, pathogens and baby formula: What's in your shellfish?
The first landmark study using next-generation technology to comprehensively examine contaminants in oysters in Myanmar reveals alarming findings: the widespread presence of human bacterial pathogens and human-derived microdebris materials, including plastics, kerosene, paint, talc and milk supplement powders.

The Parkinson's disease gut has an overabundance of opportunistic pathogens
In 2003, Heiko Braak proposed that Parkinson's disease is caused by a pathogen in the gut that could pass through the intestinal mucosal barrier and spread to the brain through the nervous system.

Crop pathogens 'remarkably adaptable'
Pathogens that attack agricultural crops show remarkable adaptability to new climates and new plant hosts, new research shows.

Inexpensive, portable detector identifies pathogens in minutes
Most viral test kits rely on labor- and time-intensive laboratory preparation and analysis techniques; for example, tests for the novel coronavirus can take days to detect the virus from nasal swabs.

Outsmarting pathogens
A new influenza strain appears each flu season, rendering past vaccines ineffective.

Autonomous microtrap for pathogens
Antibiotics are more efficient when they can act on their target directly at the site of infestation, without dilution.

Acidic environment could boost power of harmful pathogens
New findings published in PLOS Pathogens suggest lower pH in the digestive tract may make some bacterial pathogens even more dangerous.

Protozoans and pathogens make for an infectious mix
The new observation that strains of V. cholerae can be expelled into the environment after being ingested by protozoa, and that these bacteria are then primed for colonisation and infection in humans, could help explain why cholera is so persistent in aquatic environments.

Read More: Pathogens News and Pathogens Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.