Livermore Lab researchers use 3-D printing to build human physiology outside the body

December 03, 2015

The cardiovascular system is a complex web of tens of thousands of miles of arteries, capillaries and veins, branching throughout the body like tributaries of a great river. And now, researchers at Lawrence Livermore National Laboratory are recapitulating this intricate network using an emerging technology: 3D bioprinting.

"It's going to change the way we do biology," said Lab research engineer Monica Moya, the project's principal investigator. "This technology can take biology from the traditional petri dish to a 3D physiologically relevant tissue patch with functional vasculature."

Using a 3D printer and a "bio-ink" made of materials compatible with the human body, Moya and her team have successfully printed structures with living cells and biomaterials. The material and environment are engineered to enable small blood vessels, human capillaries, to develop on their own.

This process takes a while, so initially, tubes are printed out of cells and other biomaterials to deliver essential nutrients to the surrounding printed environment. Eventually, the self-assembled capillaries are able to connect with the bio-printed tubes and deliver nutrients to the cells on their own, enabling these structures to function like they do in the body.

"If you take this approach of co-engineering with nature you allow biology to help create the finer resolution of the printed tissue," Moya said. "We're leveraging the body's ability for self-directed growth, and you end up with something that is more true to physiology. We can put the cells in an environment where they know, 'I need to build blood vessels.' With this technology we guide and orchestrate the biology."

Researchers say the precision and 3D structures made possible through bioprinting are enabling them to more effectively reproduce human physiology outside of the body, and will eventually lead to a better representation of each tissue system that makes up the human body.

Bioprinting complements a different Lab project aimed at replicating the body on a micro scale. That project, known as iCHIP (in vitro Chip-based Human Investigational Platform), re-creates and integrates the central and peripheral nervous systems, the blood-brain barrier and the heart.

"Bioprinting adds another dimension to tissue-on-a-chip platforms," said Lab research engineer Elizabeth Wheeler, the principal investigator for iCHIP. "Having the ability to control the 3D structural environment, along with growing vessel networks to support the growing tissue, is one part of replicating the complexity of the human body,"

Currently in the final year of a three-year project funded by the Lab's internal research and development program, Moya has used bioprinting to create an unorganized (think: "a spaghetti bowl") network of blood vessels, but she wants to go a step further, engineering a directed hierarchy similar to those that exist in the body.

Soon, Moya and other researchers will be able to utilize a brand new 3D bioprinting lab containing a more precise printer capable of higher resolution and larger structures.

The technique, despite being in its infancy, is already opening doors to valuable research opportunities previously unavailable to science.

"Although printing implantable organs is not in the immediate future, our bioprinted tissue patches can be applied to toxicology studies, medical treatment testing and provide a test bed for fundamental science," Moya said.
-end-
Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

DOE/Lawrence Livermore National Laboratory

Related Blood Vessels Articles from Brightsurf:

Biofriendly protocells pump up blood vessels
In a new study published today in Nature Chemistry, Professor Stephen Mann and Dr Mei Li from Bristol's School of Chemistry, together with Associate Professor Jianbo Liu and colleagues at Hunan University and Central South University in China, prepared synthetic protocells coated in red blood cell fragments for use as nitric oxide generating bio-bots within blood vessels.

Specific and rapid expansion of blood vessels
Upon a heart infarct or stroke, rapid restoration of blood flow, and oxygen delivery to the hypo perfused regions is of eminent importance to prevent further damage to heart or brain.

Flexible and biodegradable electronic blood vessels
Researchers in China and Switzerland have developed electronic blood vessels that can be actively tuned to address subtle changes in the body after implantation.

Lumpy proteins stiffen blood vessels of the brain
Deposits of a protein called ''Medin'', which manifest in virtually all older adults, reduce the elasticity of blood vessels during aging and hence may be a risk factor for vascular dementia.

Cancer cells take over blood vessels to spread
In laboratory studies, Johns Hopkins Kimmel Cancer Center and Johns Hopkins University researchers observed a key step in how cancer cells may spread from a primary tumor to a distant site within the body, a process known as metastasis.

Novel function of platelets in tumor blood vessels found
Scientists at Uppsala University have discovered a hitherto unknown function of blood platelets in cancer.

Blood vessels can make you fat, and yet fit
IBS scientists have reported Angiopoietin-2 (Angpt2) as a key driver that inhibits the accumulation of potbellies by enabling the proper transport of fatty acid into general circulation in blood vessels, thus preventing insulin resistance.

Brothers in arms: The brain and its blood vessels
The brain and its surrounding blood vessels exist in a close relationship.

Feeling the pressure: How blood vessels sense their environment
Researchers from the University of Tsukuba discovered that Thbs1 is a key extracellular mediator of mechanotransduction upon mechanical stress.

Human textiles to repair blood vessels
As the leading cause of mortality worldwide, cardiovascular diseases claim over 17 million lives each year, according to World Health Organization estimates.

Read More: Blood Vessels News and Blood Vessels Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.