Nav: Home

Storing electricity in paper

December 03, 2015

Researchers at Linköping University's Laboratory of Organic Electronics, Sweden, have developed power paper -- a new material with an outstanding ability to store energy. The material consists of nanocellulose and a conductive polymer. The results have been published in Advanced Science.

One sheet, 15 centimetres in diameter and a few tenths of a millimetre thick can store as much as 1 F, which is similar to the supercapacitors currently on the market. The material can be recharged hundreds of times and each charge only takes a few seconds.

It's a dream product in a world where the increased use of renewable energy requires new methods for energy storage -- from summer to winter, from a windy day to a calm one, from a sunny day to one with heavy cloud cover.

"Thin films that function as capacitors have existed for some time. What we have done is to produce the material in three dimensions. We can produce thick sheets," says Xavier Crispin, professor of organic electronics and co-author to the article just published in Advanced Science.

Other co-authors are researchers from KTH Royal Institute of Technology, Innventia, Technical University of Denmark and the University of Kentucky.

The material, power paper, looks and feels like a slightly plasticky paper and the researchers have amused themselves by using one piece to make an origami swan -- which gives an indication of its strength.

The structural foundation of the material is nanocellulose, which is cellulose fibres which, using high-pressure water, are broken down into fibres as thin as 20 nm in diameter. With the cellulose fibres in a solution of water, an electrically charged polymer (PEDOT:PSS), also in a water solution, is added. The polymer then forms a thin coating around the fibres.

"The covered fibres are in tangles, where the liquid in the spaces between them functions as an electrolyte," explains Jesper Edberg, doctoral student, who conducted the experiments together with Abdellah Malti, who recently completed his doctorate.

The new cellulose-polymer material has set a new world record in simultaneous conductivity for ions and electrons, which explains its exceptional capacity for energy storage. It also opens the door to continued development toward even higher capacity. Unlike the batteries and capacitors currently on the market, power paper is produced from simple materials - renewable cellulose and an easily available polymer. It is light in weight, it requires no dangerous chemicals or heavy metals and it is waterproof.

The Power Papers project has been financed by the Knut and Alice Wallenberg Foundation since 2012.

"They leave us to our research, without demanding lengthy reports, and they trust us. We have a lot of pressure on us to deliver, but it's ok if it takes time, and we're grateful for that," says Professor Magnus Berggren, director of the Laboratory of Organic Electronics at Linköping University.

The new power paper is just like regular pulp, which has to be dehydrated when making paper. The challenge is to develop an industrial-scale process for this.

"Together with KTH, Acreo and Innventia we just received SEK 34 million from the Swedish Foundation for Strategic Research to continue our efforts to develop a rational production method, a paper machine for power paper," says Professor Berggren.
-end-
Power paper -- Four world records

Highest charge and capacitance in organic electronics, 1 C and 2 F (Coulomb and Farad).

Highest measured current in an organic conductor, 1 A (Ampere).

Highest capacity to simultaneously conduct ions and electrons.

Highest transconductance in a transistor, 1 S (Siemens)

Publication:

An Organic Mixed Ion-Electron Conductor for Power Electronics, Abdellah Malti, Jesper Edberg, Hjalmar Granberg, Zia Ullah Khan, Jens W Andreasen, Xianjie Liu, Dan Zhao, Hao Zhang, Yulong Yao, Joseph W Brill, Isak Engquist, Mats Fahlman, Lars Wågberg, Xavier Crispin and Magnus Berggren. Advanced Science, DOI 10.1002/advs.201500305

Linköping University

Related Energy Storage Articles:

Diamonds in your devices: Powering the next generation of energy storage
Supercapacitors, which have begun to stand in for conventional batteries, such as Li-ion batteries, can currently store much less energy than is ideal.
New membrane technology to boost water purification and energy storage
Imperial College London scientists have created a new type of membrane that could improve water purification and battery energy storage efforts.
Using mountains for long-term energy storage
The storage of energy for long periods of time is subject to special challenges.
Ionic channels in carbon electrodes for efficient electrochemical energy storage
Development towards high-performance electrochemical energy storage devices has evoked our effort on novel carbon electrodes, as certain nanocarbons are perceived to own advantages such as high specific surface areas and controllable structure.
Breakthrough enables storage and release of mechanical waves without energy loss
A new discovery by researchers at the Advanced Science Research Center at The Graduate Center, CUNY could allow light and sound waves to be stored intact for an indefinite period of time and then direct it toward a desired location on demand.
How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.
Energy storage in the Midwest and beyond: A timely analysis
As the Federal Energy Regulatory Commission (FERC) released an update to last year's order on energy storage, MRS Energy & Sustainability today publishes a timely collection of papers that unpack the issue of energy storage in the Midwest and beyond.
Engineered bacteria could be missing link in energy storage
One of the big issues with sustainable energy systems is how to store electricity that's generated from wind, solar and waves.
Need more energy storage? Just hit 'print'
Drexel University researchers have developed a conductive ink made from a special type of material they discovered, called MXene, that was used by the Trinity College researchers to print components for electronic devices.
The shape of things to come: Flexible, foldable supercapacitors for energy storage
A team of researchers from the Plasma Physics Research Centre, Science and Research Branch of Islamic Azad University in Tehran, Iran, have discovered a way of making paper supercapacitors for electricity storage.
More Energy Storage News and Energy Storage Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab