Nav: Home

First jellyfish genome reveals ancient beginnings of complex body plan

December 03, 2018

Jellyfish undergo an amazing metamorphosis, from tiny polyps growing on the seafloor to swimming medusae with stinging tentacles. This shape-shifting has served them well, shepherding jellyfish through more than 500 million years of mass extinctions on Earth.

"Whatever they're doing has really worked for them," said David Gold, an assistant professor of paleobiology in the UC Davis College of Letters and Science.

The first in-depth look at the genome of a jellyfish -- the moon jelly Aurelia aurita -- reveals the origins of this successful survival strategy. The Aurelia genome, published online Dec. 3 in the journal Nature Ecology and Evolution, indicates early jellyfish recycled existing genes to morph from polyp to medusa. The results suggest animals can radiate into new niches and forms fairly easily.

"These findings provide further evidence that evolution doesn't necessarily make the genetic code more complex," said Gold, a lead researcher on the genome study. "Jellyfish can build a big, complex life history using many of the same genes found in simpler animals."

The research team was led equally by Gold, who performed much of the work as a postdoctoral fellow at the California Institute of Technology, and by Takeo Katsuki, a project scientist at the Kavli Institute for Brain and Mind at UC San Diego.

The genome: a multi-use tool

Jellyfish come from one of the oldest branches on the animal family tree, the phylum Cnidaria, which includes corals and anemones. Jellyfish were probably the first muscle-powered swimmers in the open ocean. They appeared in the late Precambrian Era, a period of major geologic and ecological changes that preceded the Cambrian explosion of animal life.

At some point in their evolution, jellyfish gained the ability to transition from a stationary polyp to a swimming medusa. The transition involves major changes in the jellyfish nervous system, muscles and weaponry, aka the stinging cells called cnidocytes. To accomplish this, the medusa life stage often co-opts existing developmental gene networks and cell types present in polyps, the researchers found. In addition, Aurelia appears to pattern its different life stages using many of the same genes found in animals such as fruit flies and humans, the study reports. (all of these animals share a common ancestor, albeit an ancient one.)

There is a second, more controversial explanation for what the scientists found in the jellyfish genome. Perhaps the similarities between the moon jellyfish genome and "higher" animals demonstrates that the Cnidaria originally had a medusa life stage, which animals like corals and sea anemones lost.

"Our results can't distinguish between these two scenarios," said Gold. If the second hypothesis turns out to be correct, "Swimming, carnivorous animals may be even older than we think." In addition to questions of evolution, the Aurelia genome will prove valuable in many other areas of biology, Gold said. Aurelia is an important model for studying the development and function of nervous systems, and can offer insights into animal wound healing and regeneration. Moon jellies are also a major culprit in environmentally and economically damaging jellyfish blooms, which are becoming more common. For example, giant swarms of moon jellies have clogged water-intake pipes, forcing the shutdown of nuclear plants in Florida and Sweden. An improved understanding of Aurelia genetics could offer new ideas for controlling the blooms.

"In many ways, the ancient oceans in the late Precambrian are very much like what the modern oceans will look like in the near future," Gold said "meaning studying how jellyfish evolved in the past can tell us about their potential impact on the future."
-end-
Additional authors on the paper are: Yang Li and Xifeng Yan, UC Santa Barbara; Michael Regulski, Cold Spring Harbor Laboratory, New York; David Ibberson and Thomas Holstein, Heidelberg University, Heidelberg, Germany; Robert E. Steele, UC Irvine; David K. Jacobs, UCLA and Ralph J. Greenspan, UC San Diego.

Funding was provided by the National Institutes of Health, a Cordes Postdoctoral Fellowship at Caltech, the W.M. Keck Foundation, the Gordon and Betty Moore Foundation, a fellowship from the Uehara Memorial Foundation, and the NASA Astrobiology Institute.

University of California - Davis

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...