Nanoscale tweezers can perform single-molecule 'biopsies' on individual cells

December 03, 2018

Using electrical impulses, the 'tweezers' can extract single DNA, proteins and organelles from living cells without destroying them.

We are continuously expanding our knowledge on how cells function, but many unanswered questions remain. This is especially true for individual cells that are of the same type, such as brain, muscle or fat cells, but have very different compositions at the single-molecule level.

Cataloguing the diversity of seemingly identical cells can help researchers to better understand fundamental cellular processes and design improved models of disease, and even new patient-specific therapies.

However, traditional methods for studying these differences typically involve bursting the cell, resulting in all of its contents getting mixed. This results not only in the loss of spatial information - how the contents were laid out in relation to each other, but also in dynamic information, such as molecular changes in the cell over time.

A new technique, developed by a team led by Professor Joshua Edel and Dr Alex Ivanov at Imperial College London, enables researchers to extract single molecules from live cells, without destroying them. The research, published today in the journal Nature Nanotechnology, could help scientists in building up a 'human cell atlas', providing new insights into how healthy cells function and what goes wrong in diseased cells.

Professor Joshua Edel, from the Department of Chemistry at Imperial, said: "With our tweezers, we can extract the minimum number of molecules that we need from a cell in real time, without damaging it. We have demonstrated that we can manipulate and extract several different parts from different regions of the cell - including mitochondria from the cell body, RNA from different locations in the cytoplasm and even DNA from the nucleus."

The tweezers are formed from a sharp glass rod terminating with a pair of electrodes made from a carbon-based material much like graphite. The tip is less than 50 nanometers (a nanometre is one-millionth of a millimetre) in diameter and is split into two electrodes, with a 10 to 20-nanometre gap between them.

By applying an alternating current voltage, this small gap creates a powerful highly localised electrical field that can trap and extract the small contents of cells such as DNA and transcription factors - molecules that can change the activity of genes.

The method is based on a phenomenon called dielectrophoresis. The tweezers generate a sufficiently high electric field enabling the trapping of certain objects such as single molecules and particles. The ability to pick out individual molecules form a cell sets it apart from alternative technologies.

The technique could potentially be used to carry out experiments not currently possible. For example, nerve cells require much energy to fire messages around the body, so they contain many mitochondria to help them function. However, by adding or removing mitochondria from individual nerve cells, researchers could better understand their role, particularly in neurodegenerative diseases.

Dr Alex Ivanov, from the Department of Chemistry at Imperial, said: "These nanoscale tweezers could be a vital addition to the toolbox for manipulating single cells and their parts. By studying living cells at the molecular level, we can extract individual molecules from the same location with unprecedented spatial resolution and over multiple points in time. This may provide a deeper understanding of cellular processes, and in establishing why cells from the same type can be very different to each other."

Professor Edel added: "The whole project was only made possible by the unique know-how and abilities and enthusiasm of the young team members, including Dr Binoy Paulose Nadappuram and Dr Paolo Cadinu, amongst others, who all have diverse expertise and backgrounds."
-end-


Imperial College London

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.