Nav: Home

Pulses of sinking carbon reaching the deep sea are not captured in global climate models

December 03, 2018

MOSS LANDING, CA--More than two miles below the ocean's surface, microbes, worms, fishes, and other creatures great and small thrive. They rely on the transport of dead and decaying matter from the surface (marine snow) for food at these dark depths.

Up near the sea surface, carbon dioxide from the atmosphere is incorporated in the bodies of microscopic algae and the animals that eat them. When they die, these organisms sink to the depths, carrying carbon with them.

This supply of carbon to the deep sea isn't steady. At times, months' to years' worth of marine snow falls to the abyss during very short "pulse" events.

In a new study published in the Proceedings of the National Academy of Sciences (PNAS), MBARI scientists and their collaborators show that there has been an increase in pulse events off the coast of California. They also show that, although such episodes are very important to the carbon cycle, they are not well represented in global climate models.

MBARI Senior Scientist Ken Smith has studied how deep-sea communities respond to changing carbon supply for the last 29 years at a deep-sea research site called Station M. This long-term monitoring site is 4,000 meters (2.5 miles) below the ocean surface and 220 kilometers (124 miles) off California's coast. This is the only deep-sea site in the world where continuous supply and demand of carbon are recorded in detail as a time series.

A suite of autonomous instruments at Station M helps researchers study the pulse events and their impacts on deep-sea biota. Two sets of sediment traps, suspended 50 and 600 meters above the seabed, collect the sinking marine snow every 10 days. On the bottom, time-lapse cameras take hourly photographs of the seafloor, which help scientists detect changes in amounts of marine snow and changes in animal communities.

Since 2011, MBARI's Benthic Rover, an autonomous underwater vehicle the size of a small car, has crawled 11 kilometers (seven miles) across the seafloor at Station M. It measures oxygen consumption by microbes and animals on the bottom, allowing scientists to estimate how much food (carbon) is being consumed.

The PNAS study focused on six periods between 2011 and 2017 when large amounts of marine snow reached sediment traps at Station M. During these episodic pulse events, four times more carbon reached the deep sea each day, in comparison to non-pulse days.

Compared to the first 20 years of the time-series, pulse events became more prevalent after 2011. Of the total carbon that reached the sediment traps at 3,400 meters depth from 2011 to 2017, over 40 percent arrived during the pulse events.

"These events are becoming a much bigger part of the carbon cycle," said Christine Huffard, a marine biologist at MBARI and co-author of the study. In fact, since these pulse events have become larger and more frequent, researchers have had to double the size of the collection cups used in their sediment traps.

The pulses of food (and carbon) to the deep sea are not currently taken into account in global climate models. The "Martin curve" formula, which is based on sea-surface conditions such as water temperature, is widely used to estimate how much carbon reaches the deep sea. Huffard and her coauthors found that the Martin curve matched their data well on non-pulse days, but it underestimated the amount of carbon arriving during pulse events by 80 percent.

"In total the Martin curve estimated only half the deep-sea carbon that we measured," said Huffard.

These findings have implications for how the Martin curve and similar models are used to prepare global carbon budget estimates for Intergovernmental Panel on Climate Change Assessment Reports. "We need to find a way to evolve such models so that they can capture these events, given their overall importance," Huffard said.

As a next step, the research team will be looking to study individual pulse events more closely. Huffard pointed out that many questions remain unanswered. "What makes each pulse different? Why are they so much more prevalent now than previously? What surface conditions lead to their formation?" she said. "If we understand that, we can possibly model pulses from satellite data, so our global models can more accurately predict global carbon budgets."

"We would love to have 50 Station Ms all over the world, but we can't," Huffard added. "Realistically we need to model this using the global coverage provided by satellites."
Original journal article:

Smith, K.L. Jr., Ruhl, H.A., Huffard, C.L., Messié, M., Kahru, M. (2018). Episodic organic carbon fluxes from surface ocean to abyssal depths during long-term monitoring in NE Pacific. Proceedings of the National Academy of Sciences, 115 (48) 12235-12240, (27 November 2018)

Online news release with images:

Monterey Bay Aquarium Research Institute

Related Carbon Articles:

First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.
How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.
New route to carbon-neutral fuels from carbon dioxide discovered by Stanford-DTU team
A new way to convert carbon dioxide into the building block for sustainable liquid fuels was very efficient in tests and did not have the reaction that destroys the conventional device.
How much carbon the land can stomach with more carbon dioxide in the air
Researchers from 28 institutions in nine countries succeeded in quantifying carbon dioxide fertilization for the past five decades, using simulations from 12 terrestrial ecosystem models and observations from seven field carbon dioxide enrichment experiments.
'Charismatic carbon'
According to the Intergovernmental Panel on Climate Change (IPCC), addressing carbon emissions from our food sector is absolutely essential to combatting climate change.
Extreme wildfires threaten to turn boreal forests from carbon sinks to carbon sources
A research team investigated the impact of extreme fires on previously intact carbon stores by studying the soil and vegetation of the boreal forest and how they changed after a record-setting fire season in the Northwest Territories in 2014.
Can we still have fun if the UK goes carbon neutral?
Will Britain going carbon neutral mean no more fun? Experts from the University of Surrey have urged local policy makers to put in place infrastructure that will enable people to enjoy recreation and leisure while keeping their carbon footprint down.
Could there be life without carbon? (video)
One element is the backbone of all forms of life we've ever discovered on Earth: carbon.
Biodiversity and carbon: perfect together
Biodiversity conservation is often considered to be a co-benefit of protecting carbon sinks such as intact forests to help mitigate climate change.
Discovery of microbial activity in carbon sinking as a gatekeeper of Earth's deep carbon
Carbon is transported from Earth's surface to the mantle where the oceanic crust subducts beneath continents.
More Carbon News and Carbon Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at