Nav: Home

New machine learning method predicts additions to global list of threatened plant species

December 03, 2018

The International Union for Conservation of Nature's (IUCN) Red List of Threatened Species is a powerful tool for researchers and policymakers working to stem the tide of species loss across the globe. But adding even a single species to the list is no small task, demanding countless hours of expensive, rigorous and highly specialized research.

As a result of these limitations, a large number of known species have not yet been formally assessed by the IUCN and ranked in one of five categories, from least concern to critically endangered. This deficit is quite apparent in plants: Only about 5 percent of all currently known plant species appear on IUCN's Red List in any capacity.

A new method co-developed by Anahí Espíndola, an assistant professor of entomology at the University of Maryland, uses the power of machine learning and open-access data to predict species that could be eligible for at-risk status on the IUCN Red List. The research team created and trained a machine learning algorithm to assess more than 150,000 species of plants from all corners of the world, making their project among the largest assessments of conservation risk to date. According to the results, more than 10 percent of these species are highly likely to qualify for an at-risk IUCN classification.

The algorithm is a predictive model that can be applied to any grouping of species at any scale, from the entire globe to a single city park. Espíndola and her colleagues published their findings online in the Proceedings of the National Academy of Sciences on December 3, 2018.

"Our method isn't meant to replace formal assessments using IUCN protocols. It's a tool that can help prioritize the process, by calculating the probability that a given species is at risk," Espíndola said. "Ultimately, we hope it will help governments and resource managers decide where to devote their limited resources for conservation. This could be especially useful in regions that are understudied."

Espíndola and her collaborators built their predictive model using open-access data from the Global Biodiversity Information Facility (GBIF) and the TRY Plant Trait Database. Lead author Tara Pelletier, an assistant professor of biology at Radford University, worked together with Espíndola to perform the machine learning analysis.

Espíndola and Pelletier then trained the model using GBIF and TRY data from the relatively small group of plant species already on the IUCN Red List. This allowed the researchers to assess and fine-tune the model's accuracy by checking its predictions against the listed species' known IUCN risk status. The Red List sorts non-extinct species into one of five classification categories: least concern, near-threatened, vulnerable, endangered and critically endangered.

The researchers then applied the model to the many thousands of plant species that remain unlisted by IUCN. According to the results, more than 15,000 of the species--roughly 10 percent of the total assessed by the team--have a high probability of qualifying as near-threatened, at a minimum.

Espíndola and her colleagues mapped the data and noted several major geographical trends in the model's predictions. At-risk species tended to cluster in areas already known for their high native biodiversity, such as the Central American rainforests and southwestern Australia. The model also flagged regions such as California and the southeastern United States, which are home to a large number of endemic species, meaning that these species do not naturally occur anywhere else on Earth.

"When I first started thinking about this project, I suspected that many regions with high diversity would be well-studied and protected. But we found the opposite to be true," Espíndola said. "Many of the high-diversity areas corresponded to regions with the highest probability of risk. When we saw the maps, we were surprised it was that clear. Endemic species also tend to be more at risk because they are usually confined to smaller areas."

The model also flagged a few surprising areas not typically known for their biodiversity, such as the southern coast of the Arabian Peninsula, as having a high number of at-risk species. Some of the most imperiled regions have not received enough attention from researchers, according to Espíndola. She hopes that her method can help to fill in some of these knowledge gaps by identifying regions and species in need of further study.

"Let's say you wanted to assess every species of wild bee on one continent. So you do the assessment and find that only one species is at risk. Now you've used all those resources to identify an area with low risk, which is still helpful, but not ideal when resources are limited. We want to help prevent that from happening," Espíndola said. "Our analysis was global, but the model can be adapted for use at any geographic scale. Everything we've done is 100 percent open access, highlighting the power of publicly-available data. We hope people will use our model--and we hope they point out errors and help us fix them, to make it better."
-end-
The research paper, "Predicting plant conservation priorities on a global scale," Tara Pelletier, Bryan Carstens, David Tank, Jack Sullivan and Anahí Espíndola, was published online in the Proceedings of the National Academy of Sciences on December 3, 2018.

This work was supported by the National Science Foundation (Award Nos. DEB-1457519, DEB-1457726 and EPS-809935), the National Institutes of Health (Award Nos. NCRR 1P20RR016454-01 and NCRR 1P20RR016448-01), DIVERSITAS/Future Earth and the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig. The content of this article does not necessarily reflect the views of these organizations.

Media Relations Contact: Matthew Wright, 301-405-9267, mewright@umd.edu

University of Maryland

College of Computer, Mathematical, and Natural Sciences
2300 Symons Hall
College Park, MD 20742
http://www.cmns.umd.edu
@UMDscience

About the College of Computer, Mathematical, and Natural Sciences

The College of Computer, Mathematical, and Natural Sciences at the University of Maryland educates more than 9,000 future scientific leaders in its undergraduate and graduate programs each year. The college's 10 departments and more than a dozen interdisciplinary research centers foster scientific discovery with annual sponsored research funding exceeding $175 million.

University of Maryland

Related Biodiversity Articles:

About the distribution of biodiversity on our planet
Large open-water fish predators such as tunas or sharks hunt for prey more intensively in the temperate zone than near the equator.
Bargain-hunting for biodiversity
The best bargains for conserving some of the world's most vulnerable salamanders and other vertebrate species can be found in Central Texas and the Appalachians, according to new conservation tools developed at the National Institute for Mathematical and Biological Synthesis (NIMBioS) at the University of Tennessee, Knoxville.
Researchers solve old biodiversity mystery
The underlying cause for why some regions are home to an extremely large number of animal species may be found in the evolutionary adaptations of species, and how they limit their dispersion to specific natural habitats.
Biodiversity offsetting is contentious -- here's an alternative
A new approach to compensate for the impact of development may be an effective alternative to biodiversity offsetting -- and help nations achieve international biodiversity targets.
Biodiversity yields financial returns
Farmers could increase their revenues by increasing biodiversity on their land.
Biodiversity and wind energy
The location and operation of wind energy plants are often in direct conflict with the legal protection of endangered species.
Mapping global biodiversity change
A new study, published in Science, which focuses on mapping biodiversity change in marine and land ecosystems shows that loss of biodiversity is most prevalent in the tropic, with changes in marine ecosystems outpacing those on land.
What if we paid countries to protect biodiversity?
Researchers from Sweden, Germany, Brazil and the USA have developed a financial mechanism to support the protection of the world's natural heritage.
Grassland biodiversity is blowing in the wind
Temperate grasslands are the most endangered but least protected ecosystems on Earth.
The loss of biodiversity comes at a price
A University of Cordoba research team ran the numbers on the impact of forest fires on emblematic species using the fires in Spain's Doñana National Park and Segura mountains in 2017 as examples
More Biodiversity News and Biodiversity Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.