Nav: Home

Diamonds in your devices: Powering the next generation of energy storage

December 03, 2019

Our use of battery-operated devices and appliances has been increasing steadily, bringing with it the need for safe, efficient, and high-performing power sources. To this end, a type of electrical energy storage device called the supercapacitor has recently begun to be considered as a feasible, and sometimes even better, alternative to conventional widely used energy-storage devices such as Li-ion batteries. Supercapacitors can charge and discharge much more rapidly than conventional batteries and also continue to do so for much longer. This makes them suitable for a range of applications such as regenerative braking in vehicles, wearable electronic devices, and so on. "If a high-performance supercapacitor using a non-flammable, non-toxic, and safe aqueous electrolyte can be created, it can be incorporated into wearable devices and other devices, contributing to a boom in the Internet of Things," Dr Takeshi Kondo, who is the lead scientist in a recent breakthrough study in the field, says.

Yet, despite their potential, supercapacitors, at present, have certain drawbacks that are preventing their widespread use. One major issue is that they have low energy density; that is, they store insufficient energy per unit area of their space. Scientists first attempted to solve this problem by using organic solvents as the electrolyte--the conducting medium--inside supercapacitors to raise the generated voltage (note that the square of the voltage is directly proportional to energy density in energy storage devices). But organic solvents are costly and have low conductivity. So, perhaps, an aqueous electrolyte would be better, the scientists thought.

Thus, the development of supercapacitor components that would be effective with aqueous electrolytes became a central research topic in the field.

In the aforementioned recent study, published in Scientific Reports, Dr Kondo and group from the Tokyo University of Science and Daicel Corporation in Japan explored the possibility of using a novel material, the boron-doped nanodiamond, as electrode in the supercapacitors--electrodes are the conducting materials in a battery or capacitor that connect the electrolyte with external wires, to transport current out of the system. This research group's choice of electrode material was based on the knowledge that boron-doped diamonds have a wide potential window, a feature that enables a high-energy storage device to remain stable over time. "We thought that water-based supercapacitors producing a large voltage could be realized if conductive diamond is used as an electrode material," Dr Kondo says.

The scientists used a technique called the microwave plasma-assisted chemical vapor deposition, MPCVD, to manufacture these electrodes and examined their performance by testing their properties. They found that in a basic two-electrode system with an aqueous sulfuric acid electrolyte, these electrodes produced a much higher voltage than did conventional cells, resulting in much higher energy and power densities for the supercapacitor. Further, they saw that even after 10,000 cycles of charging and discharging, the electrode remained very stable. The boron-doped nanodiamond had proven its worth.

Armed with this success, the scientists then ventured to explore whether this electrode material would show the same results if the electrolyte were changed to saturated sodium perchlorate solution, which is known to enable production of a higher voltage than what is possible with conventional sulfuric acid electrolyte. Indeed, the already high voltage generated expanded considerably in this setup.

Thus, as Dr Kondo has said, "the boron-doped nanodiamond electrodes are useful for aqueous supercapacitors, which function as high-energy storage devices suitable for high-speed charging and discharging."

Looks like diamonds could be driving our electronic and physical lives in the near future!
-end-
About the Tokyo University of Science

Tokyo University of Science (TUS) is a well-known and respected university, and the largest science-specialized private research university in Japan, with four campuses in central Tokyo and its suburbs and in Hokkaido. Established in 1881, the university has continually contributed to Japan's development in science through inculcating the love for science in researchers, technicians, and educators.

With a mission of "Creating science and technology for the harmonious development of nature, human beings, and society", TUS has undertaken a wide range of research from basic to applied science. TUS has embraced a multidisciplinary approach to research and undertaken intensive study in some of today's most vital fields. TUS is a meritocracy where the best in science is recognized and nurtured. It is the only private university in Japan that has produced a Nobel Prize winner and the only private university in Asia to produce Nobel Prize winners within the natural sciences field.

Website: https://www.tus.ac.jp/en/mediarelations/

About Associate Professor Takeshi Kondo from the Tokyo University of Science

Dr Takeshi Kondo, is currently Associate Professor at the Tokyo University of Science. Since 2004, he has been involved in research in the fields of functional solid-state chemistry and electrochemistry. He is the corresponding author of this study. He has over 110 research publications to his name and is affiliated with several prominent academic societies, including The Chemical Society of Japan.

Funding information

This research was supported by Adaptable and Seamless Technology transfer Program through Target-driven R&D (A-STEP) from Japan Science and Technology Agency (JST) and by JSPS KAKENHI Grant Number 19K05064.

Tokyo University of Science

Related Diamonds Articles:

Get diamonds, take temperature
Measuring the temperature of objects at a nanometer-scale has been a long challenge, especially in living biological samples, because of the lack of precise and reliable nanothermometers.
Carbon-rich exoplanets may be made of diamonds
In a new study published recently in The Planetary Science Journal, a team of researchers from Arizona State University and the University of Chicago have determined that some carbon-rich exoplanets, given the right circumstances, could be made of diamonds and silica.
Diamonds shine a light on hidden currents in graphene
A new diamond-based quantum sensing technique gives researchers a map of the intricate movement of electricity on a microscopic scale.
Study shows diamonds aren't forever
Two Tulane researchers were among a team of international experts who co-authored a paper that was published in the journal Nature on June 3.
UCI-led team designs carbon nanostructure stronger than diamonds
Researchers at the University of California, Irvine and other institutions have closed-cell plate-nanolattices that are stronger than diamonds in terms of a ratio of strength to density.
Diamonds in your devices: Powering the next generation of energy storage
Supercapacitors, which have begun to stand in for conventional batteries, such as Li-ion batteries, can currently store much less energy than is ideal.
Imperfect diamonds paved road to historic Deep Earth discoveries
Hundreds of scientists will celebrate in Washington, D.C., the many historic results of the 10-year, $300 million Deep Carbon Observatory, one of the largest-ever global Earth sciences research projects.
Superdeep diamonds confirm ancient reservoir deep under Earth's surface
Analyses show that gases found in microscopic inclusions in diamonds come from a stable subterranean reservoir at least as old as the Moon, hidden more than 410 km below sea level in the Earth's mantle.
Finding alternatives to diamonds for drilling
Diamond is one of the only materials hard and tough enough for the job of constant grinding without significant wear, but diamonds are pricey.
Earth recycles ocean floor into diamonds
Most diamonds are made of cooked seabed. The diamond on your finger is most likely made of recycled seabed cooked deep in the Earth.
More Diamonds News and Diamonds Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.