Nav: Home

How the strep bacterium hides from the immune system

December 03, 2019

A bacterial pathogen that causes strep throat and other illnesses cloaks itself in fragments of red blood cells to evade detection by the host immune system, according to a study publishing December 3 in the journal Cell Reports. The researchers found that Group A Streptococcus (GAS) produces a previously uncharacterized protein, named S protein, which binds to the red blood cell membrane to avoid being engulfed and destroyed by phagocytic immune cells. By arming GAS with this form of immune camouflage, S protein enhances bacterial virulence and decreases survival in infected mice.

"Our study describes a completely novel mechanism for immune evasion," says corresponding author David Gonzalez of the University of California, San Diego. "We believe the discovery of this previously overlooked virulence factor, S protein, has broad implications for development of countermeasures against GAS."

GAS is a human-specific pathogen that can cause many different infections, from minor illnesses to very serious and deadly diseases. Some of these conditions include strep throat, scarlet fever, a skin infection called impetigo, toxic shock syndrome, and flesh-eating disease. An estimated 700 million infections occur worldwide each year, resulting in more than half a million deaths. Despite active research, a protective vaccine remains elusive.

To date, penicillin remains a primary drug of choice for combatting GAS infections. But the rate of treatment failures with penicillin has increased to nearly 40% in certain regions of the world. "Due to the high prevalence of GAS infection and the decreasing efficacy of the available set of countermeasures, it is critical to investigate alternative approaches against GAS infection," Gonzalez says.

One alternative approach is to develop novel anti-virulence therapeutics. To avoid immune clearance, GAS expresses a wide variety of molecules called virulence factors to facilitate survival during infection. But the function of many of these proteins remains unknown, hindering the development of alternative pharmacological interventions to combat widespread antibiotic resistance.

To address this gap in knowledge, Gonzalez and co-first authors Igor Wierzbicki and Anaamika Campeau of the University of California, San Diego, used a nanotechnology-based technique called biomimetic virulomics to identify proteins that are secreted by GAS and bind to red blood cells. This approach revealed a previously uncharacterized protein, which the researchers named S protein, because this type of protein is limited to members of the Streptococcus genus.

The researchers found that a mutant bacterial strain lacking S protein was less able to grow in human blood, and less able to bind to red blood cells, compared to the non-mutated strain. The mutant strain was also more readily captured and killed by phagocytic immune cells called macrophages and neutrophils. In addition, the absence of S protein vastly reshaped the bacterial protein landscape, decreasing the abundance of many known virulence factors.

Moreover, mice infected with GAS cells coated with red blood cells showed a 90% mortality rate, compared to 40% of mice infected with uncoated GAS cells. Infection with coated GAS cells also caused a more rapid decrease in body weight. "These findings suggest that S protein co-opts red blood cell membranes for molecular mimicry, or imitation of host molecules, to evade the immune response," Gonzalez says.

Additional experiments showed that infection with GAS caused a progressive decline in the body weight of mice and a 90% mortality rate. By contrast, all mice infected with mutant GAS lacking S protein survived infection, and their body weight stabilized and remained constant after a slight initial decline. Infection with mutant GAS also resulted in a lower concentration of bacteria in the bloodstream and organs, and promoted a robust immune response and immunological memory.

"Taken together, the results suggest that inactivation of S protein function makes GAS vulnerable to host immunity," Gonzalez says. "S protein influences virulence by capturing lysed red blood cell membranes to cloak the bacterial cell surface, which allows bacteria to circumvent host immunity. This novel evasion mechanism can be targeted for anti-streptococcal therapies."

Currently, Gonzalez and his team are examining the mechanism by which S protein binds to red blood cells. They are also studying the role that S protein plays in other important human pathogens, including Streptococcus pneumoniae, which causes pneumonia and other illnesses, as well as Group B Streptococcus or S. agalactiae--a bacterium that is a common cause of severe infections in newborns during the first week of life.

"Ultimately, the findings could lead to the development of a novel vaccine candidate," Gonzalez says. "Because of its pivotal roles in pathogenesis and immune evasion, and its conserved nature in Streptococci, S protein shows promising clinical potential as a target for the development of anti-virulence pharmacological interventions."
-end-
This work was supported by the Department of Pharmacology, the Skaggs School of Pharmacy and Pharmacological Sciences, the UCSD Multiplexing Proteomics Center, the UCSD Microbial Sciences Initiative Graduate Research Fellowship, the UCSD Graduate Training Program in Cellular and Molecular Pharmacology, the National Institutes of Health, and the National Institute of Allergy and Infectious Diseases.

Cell Reports, Wierzbicki and Campeau et al.: "Group A Streptococcal S protein utilizes red blood cells as immune camouflage and is a critical determinant for immune evasion" https://www.cell.com/cell-reports/fulltext/S2211-1247(19)31472-X

Cell Reports (@CellReports), published by Cell Press, is a weekly open-access journal that publishes high-quality papers across the entire life sciences spectrum. The journal features reports, articles, and resources that provide new biological insights, are thought-provoking, and/or are examples of cutting-edge research. Visit: http://www.cell.com/cell-reports. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Immune Response Articles:

Obesity may alter immune system response to COVID-19
Obesity may cause a hyperactive immune system response to COVID-19 infection that makes it difficult to fight off the virus, according to a new manuscript published in the Endocrine Society's journal, Endocrinology.
Immune response to Sars-Cov-2 following organ transplantation
Even patients with suppressed immune systems can achieve a strong immune response to Sars-Cov-2.
'Relaxed' T cells critical to immune response
Rice University researchers model the role of relaxation time as T cells bind to invaders or imposters, and how their ability to differentiate between the two triggers the body's immune system.
A novel mechanism that triggers a cellular immune response
Researchers at Baylor College of Medicine present comprehensive evidence that supports a novel trigger for a cell-mediated response and propose a mechanism for its action.
Platelets exacerbate immune response
Platelets not only play a key role in blood clotting, but can also significantly intensify inflammatory processes.
How to boost immune response to vaccines in older people
Identifying interventions that improve vaccine efficacy in older persons is vital to deliver healthy ageing for an ageing population.
Unveiling how lymph nodes regulate immune response
The Hippo pathway keeps lymph nodes' development healthy. If impaired, lymph nodes become full of fat cells or fibrosis develops.
Early immune response may improve cancer immunotherapies
Researchers report a new mechanism for detecting foreign material during early immune responses.
Immune response depends on mathematics of narrow escapes
The way immune cells pick friends from foes can be described by a classic maths puzzle known as the 'narrow escape problem'.
Signature of an ineffective immune response to cancer revealed
Our immune system is programmed to destroy cancer cells. Sometimes it has trouble slowing disease progression because it doesn't act quickly or strongly enough.
More Immune Response News and Immune Response Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.