Photonics meets surface science in a cheap and accurate sensor for biological liquids

December 03, 2020

Skoltech researchers and their colleagues from Russia and Israel have come up with a new, simple and inexpensive method of testing liquid biological samples that can be further developed to work in clinical settings, including real-time testing during surgery. The paper was published in the journal Light: Science & Applications.

The most common method of real-time diagnostic testing for biological samples (such as urine or saliva) that is used in the healthcare system, optical label-free sensors, are highly sensitive, but that sensitivity comes at a cost in terms of time and resources. Looking for a more efficient alternative, the research team, coordinated by Prof. Dmitry Gorin from the Center for Photonics and Quantum Materials at the Skolkovo Institute of Science and Technology (Skoltech) and Dr. Roman Noskov from Tel Aviv University, turned to the data that these sensors normally disregard: optical dispersion of the refractive index of a sample that can act as a fingerprint of sorts for tracking the changes in its composition.

They introduced the concept of in-fiber multispectral optical sensing (IMOS) for liquid biological samples in both static and real-time modes. According to the team, this sensing method is precise, reliable and very sensitive to impurities in the sample, which can make it useful both for diagnostic purposes and for real-time simulations of various biological processes.

Hollow-core microstructured optical fiber (HC-MOF), a particular kind of optical fibers which confine light inside a hollow core surrounded by microstructured cladding, is at the heart of the new sensing approach. Liquid goes through chambers in the fiber, and spectral shifts of maxima and minima in the transmission spectrum of HC-MOF are interpreted as signals about the chemical composition of the sample. With no need for an external cavity or interferometer, the sensing system is easy and inexpensive to produce.

The researchers tested its performance on the concentration of bovine serum albumin (BSA), which is commonly used in such experiments, dissolved in water and in a phosphate-buffered saline solution. The resolution they were able to show consistently in several experiments was equivalent to 1 gram of BSA in a liter of liquid, close to the accuracy of standard albumin tests and potentially meets clinical needs.

"Our concept can be considered a platform for intraoperative analysis of biomarkers of different types. For that, we need to test it on other bioanalytes and further modify the hollow core fiber to increase specificity. Future trials of these point-of-care devices will serve as the first step for realization of the true 'bench-to-bedside' approach," Gorin notes.

"In-fiber multispectral optical sensing opens new horizons in fast, cheap, and reliable analysis of blood and other bodily liquids in real time that is important for timely diagnostics of various diseases and abnormal conditions," Noskov adds.

The team plans to continue their research in increasing specificity as well as sensitivity of this approach. They are going to file a patent application and look for industrial partners and investors interested in developing clinical devices based on this type of sensors.
-end-
This work is a result of a collaboration between not only Skoltech and Tel Aviv university, but also other organizations, including Saratov State University, Moscow State University, Moscow Institute of Physics and Technology, Tomsk State University, RAS Institute of Precision Mechanics and Control, and Nanostructured Glass Technology, an industrial partner.

Skolkovo Institute of Science and Technology (Skoltech)

Related Sensors Articles from Brightsurf:

OPD optical sensors that reproduce any color
POSTECH Professor Dae Sung Chung's team uses chemical doping to freely control the colors of organic photodiodes.

Airdropping sensors from moths
University of Washington researchers have created a sensor system that can ride aboard a small drone or an insect, such as a moth, until it gets to its destination.

How to bounce back from stretched out stretchable sensors
Elastic can stretch too far and that could be problematic in wearable sensors.

New mathematical tool can select the best sensors for the job
In the 2019 Boeing 737 Max crash, the recovered black box from the aftermath hinted that a failed pressure sensor may have caused the ill-fated aircraft to nose dive.

Lighting the way to porous electronics and sensors
Researchers from Osaka University have created porous titanium dioxide ceramic thin films, at high temperatures and room temperature.

Russian scientists to improve the battery for sensors
Researchers of Peter the Great St. Petersburg Polytechnic University (SPbPU) approached the creation of a solid-state thin-film battery for miniature devices and sensors.

Having an eye for colors: Printable light sensors
Cameras, light barriers, and movement sensors have one thing in common: they work with light sensors that are already found in many applications.

Improving adhesives for wearable sensors
By conveniently and painlessly collecting data, wearable sensors create many new possibilities for keeping tabs on the body.

Kirigami inspires new method for wearable sensors
As wearable sensors become more prevalent, the need for a material resistant to damage from the stress and strains of the human body's natural movement becomes ever more crucial.

Wearable sensors detect what's in your sweat
A team of scientists at the University of California, Berkeley, is developing wearable skin sensors that can detect what's in your sweat.

Read More: Sensors News and Sensors Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.